Summation problem

Algebra Level 4

α = k = 1 50 k k 4 + k 2 + 1 \alpha = \large\displaystyle\sum_{k=1}^{50}\dfrac{k}{k^4+ k^2 + 1} Find 2551 α 2551\alpha .


The answer is 1275.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Mar 15, 2017

Relevant wiki: Telescoping Series - Sum

α = k = 1 50 k k 4 + k 2 + 1 = k = 1 50 k ( k 2 + k + 1 ) ( k 2 k + 1 ) = 1 2 k = 1 50 2 k ( k 2 + k + 1 ) ( k 2 k + 1 ) = 1 2 k = 1 50 ( k 2 + k + 1 ) ( k 2 k + 1 ) ( k 2 + k + 1 ) ( k 2 k + 1 ) = 1 2 k = 1 50 1 k 2 k + 1 1 k 2 + k + 1 = 1 2 ( 1 1 2 1 + 1 1 50 2 + 50 + 1 ) = 1 2 ( 1 1 2551 ) = 1275 2551 2551 α = 1275 \begin{aligned} \alpha &= \displaystyle \sum_{k=1}^{50} \dfrac{k}{k^4+k^2+1} \\ &= \displaystyle \sum_{k=1}^{50} \dfrac{k}{(k^2+k+1)(k^2-k+1)} \\ &= \displaystyle \dfrac 12 \sum_{k=1}^{50} \dfrac{2k}{(k^2+k+1)(k^2-k+1)} \\ &= \displaystyle \dfrac 12 \sum_{k=1}^{50} \dfrac{(k^2+k+1) - (k^2-k+1)}{(k^2+k+1)(k^2-k+1)} \\ &= \displaystyle \dfrac 12 \sum_{k=1}^{50} \dfrac{1}{k^2-k+1} - \dfrac{1}{k^2+k+1} \\ &= \dfrac 12 \left( \dfrac{1}{1^2-1+1} - \dfrac{1}{{50}^2+50+1} \right) \\ &= \dfrac 12 \left( 1 - \dfrac{1}{2551} \right) \\ &= \dfrac{1275}{2551} \end{aligned} \\ \implies 2551 \alpha = \ \boxed{1275}

Sudhamsh Suraj
Mar 12, 2017

Write denominator k 4 + k 2 + 1 k^4+k^2+1 = ( k 2 + 1 ) 2 k 2 (k^2+1)^2-k^2 = ( k 2 + 1 k ) ( k 2 + 1 + k ) (k^2+1-k)(k^2+1+k) .

Now numerator as { ( k 2 + 1 + k ) ( k 2 + 1 k ) (k^2+1+k)-(k^2+1-k) }/2

Now by using telescopic cancellations.

We get the value of sequence to be 1275/2551

So 2551(1275/2551) = 1275.

Same bro but it's coming 12750.16

Nivedit Jain - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...