Summation this Summer! 2

Algebra Level 4

1 × 3 2 + 3 × 5 2 2 + 5 × 7 2 3 + 7 × 9 2 4 + = ? \large \dfrac{1 \times 3}{2} + \dfrac{3 \times 5}{2^2} + \dfrac{5 \times 7}{2^3} + \dfrac{7 \times 9}{2^4} + \cdots = \, ?


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let’s start with the following series : \text{Let's start with the following series : }

S = k = 1 k 2 2 k \large\displaystyle \mathfrak{S} = \displaystyle \sum_{k=1}^{\infty} \frac{k^2}{2^k}

S = 1 2 2 + 2 2 2 2 + 3 2 2 3 + (1) \large\displaystyle \implies \mathfrak{S} = \frac{1^2}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \cdots \infty \space \text{(1)}

S 2 = 1 2 2 2 + 2 2 2 3 + (2) \large \displaystyle\implies \frac{\mathfrak{S}}{2} = \frac{1^2}{2^2} + \frac{2^2}{2^3} + \cdots \infty \space \text{(2)}

Subtracting (2) from (1) \text{Subtracting (2) from (1)}

S 2 = 1 2 + 2 2 1 2 2 2 + 3 2 2 2 2 3 + (3) \large \displaystyle\implies \frac{\mathfrak{S}}{2} = \frac{1}{2} + \frac{2^2-1^2}{2^2} + \frac{3^2-2^2}{2^3} + \cdots \infty \space \text{(3)}

S 4 = 1 2 2 + 3 2 3 + 5 2 4 + (4) \large\displaystyle \implies \frac{\mathfrak{S}}{4} =\frac{1}{2^2}+ \frac{3}{2^3} + \frac{5}{2^4} + \cdots \infty \space \text{(4)}

Subtracting (4) from (3) \text{Subtracting (4) from (3)}

S 4 = 1 2 + 3 1 2 2 + 5 3 2 3 + \large\displaystyle \implies \frac{\mathfrak{S}}{4} = \frac{1}{2} + \frac{3-1}{2^2} + \frac{5-3}{2^3} + \cdots \infty

S 4 = 1 2 + 2 2 2 ( 1 + 1 2 + 1 2 2 + ) \large \displaystyle\implies \frac{\mathfrak{S}}{4} = \frac{1}{2} + \frac{2}{2^2}\color{#D61F06}{\underbrace{(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots \infty)}}

The above braced series is an \text{The above braced series is an } Infinite Geometric Progression with common ratio 1 2 \text{ with common ratio }\frac{1}{2}

S 4 = 1 2 + 2 2 2 1 1 1 2 \large\displaystyle \implies \frac{\mathfrak{S}}{4} = \frac{1}{2} + \frac{2}{2^2}\frac{1}{1-\frac{1}{2}}

S 4 = 3 2 S = 6 \large\displaystyle \implies \frac{\mathfrak{S}}{4} = \frac{3}{2}\implies \mathfrak{S} = 6

The series in the problem can be written as : \text{The series in the problem can be written as :}

A = k = 1 ( 2 k 1 ) ( 2 k + 1 ) 2 k \large\displaystyle \mathfrak{A} = \sum_{k=1}^{\infty} \frac{(2k-1)(2k+1)}{2^k}

A = k = 1 4 k 2 1 2 k \large\displaystyle \mathfrak{A} = \sum_{k=1}^{\infty} \frac{4k^2-1}{2^k}

A = 4 k = 1 k 2 2 k k = 1 1 2 k \large \displaystyle\implies \mathfrak{A} = 4\underbrace{\sum_{k=1}^{\infty}\frac{k^2}{2^k}} - \underbrace{\sum_{k=1}^{\infty} \frac{1}{2^k}}

A = 4. S 1 2 1 1 2 \large \displaystyle\implies \mathfrak{A} = 4 .\underbrace{\mathfrak{S}} - \underbrace{\frac{\frac{1}{2}} {1-\frac{1}{2}}}

A = 24 1 A = 23 \large \displaystyle\implies \mathfrak{A} = 24 - 1\implies \boxed{\mathfrak{A} = 23}

Did the same way! Also, the solution is absolutely neatly written! +1!

Rudraksh Shukla - 5 years, 2 months ago

Exactly the same

Aakash Khandelwal - 5 years, 2 months ago

Did the exact same

Aditya Kumar - 5 years ago
展豪 張
Apr 20, 2016

Here I will use generating function:
Let f ( x ) = 1 × 3 x + 3 × 5 x 2 + 5 × 7 x 3 + 7 × 9 x 4 + f(x)=1\times 3x+3\times 5x^2+5\times 7x^3+7\times 9x^4+\cdots
So we have to find f ( 1 2 ) f(\dfrac 12)
f ( x ) ( 1 x ) = 1 × 3 x + 4 × 3 x 2 + 4 × 5 x 3 + 4 × 7 x 4 + f ( x ) ( 1 x ) 2 = 1 × 3 x + 3 × 3 x 2 + 4 × 2 x 3 + 4 × 2 x 4 + = 3 x + 9 x 2 + 8 x 3 + 8 x 4 + f ( x ) ( 1 x ) 3 = 3 x + 6 x 2 x 3 \begin{array}{c}\\f(x)(1-x)&=1\times 3x&+4\times 3x^2&+4\times 5x^3&+4\times 7x^4&+\cdots\\f(x)(1-x)^2&=1\times 3x&+3\times 3x^2&+4\times 2x^3&+4\times 2x^4&+\cdots\\&=3x&+9x^2&+8x^3&+8x^4&+\cdots\\f(x)(1-x)^3&=3x&+6x^2&-x^3\end{array}
f ( x ) = 3 x + 6 x 2 x 3 ( 1 x ) 3 \therefore f(x)=\dfrac{3x+6x^2-x^3}{(1-x)^3}
Substitute x = 1 2 x=\dfrac 12 yields f ( 1 2 ) = 23 f(\dfrac 12)=23



Where can I get more examples of using generating function?

Arunava Das - 3 years, 5 months ago
Noam Pirani
Apr 18, 2016

I have a slightly different solution. The sequence we sum is ( 2 n 1 ) ( 2 n + 1 ) 2 n \frac{(2n-1)(2n+1)}{2^n} . The denominator is growing as x n x^n when x = 1 / 2 x=1/2 , which calls for the use of generating functions. The sequence a n = ( 2 n 1 ) ( 2 n + 1 ) = 4 n 2 1 a_n=(2n-1)(2n+1)=4n^2-1 is generated by F ( x ) = 4 ( x D ) 2 ( x 1 x ) x 1 x = 4 ( x 2 + x ) ( 1 x ) 3 x 1 x F(x)=4(xD)^2(\frac{x}{1-x})-\frac{x}{1-x}=\frac{4(x^2+x)}{(1-x)^3}-\frac{x}{1-x} . Substituting x = 1 / 2 x=1/2 gives the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...