Summation this Summer! 3

( 2 n 1 ) 2 + 2. ( 2 n 2 ) 2 + 3. ( 2 n 3 ) 2 + 2 n . ( 2 n 2 n ) 2 \dbinom{2n}{1}^2 +2.\dbinom{2n}{2}^2 +3.\dbinom{2n}{3}^2 \cdots \cdots + 2n.\dbinom{2n}{2n}^2

Find the closed form of the above series.

Notation :
! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

( 4 n + 3 ) ! [ ( 2 n + 1 ) ! ] 2 \dfrac{ (4n+3)! }{ [(2n+1)!]^2 } ( 4 n 3 ) ! [ ( 2 n 1 ) ! ] 2 \dfrac{ (4n-3)! }{ [(2n-1)!]^2 } ( 4 n 1 ) ! [ ( 2 n + 1 ) ! ] 2 \dfrac{ (4n-1)! }{ [(2n+1)!]^2 } ( 4 n 1 ) ! [ ( 2 n 1 ) ! ] 2 \dfrac{ (4n-1)! }{ [(2n-1)!]^2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Binomial Theorem

We will start with the following expansion : \text{We will start with the following expansion :}

( 1 + x ) 2 n = ( 2 n 0 ) + ( 2 n 1 ) x + ( 2 n 2 ) x 2 + + ( 2 n 2 n ) x 2 n \large \begin{aligned} (1+x)^{2n}=\binom{2n}{0} + \binom{2n}{1}x+\binom{2n}{2}x^2+\cdots+\binom{2n}{2n}x^{2n}\end{aligned}

Differentiating with respect to x we have \text{Differentiating with respect to x we have }

2 n ( 1 + x ) 2 n 1 = ( 2 n 1 ) + 2 ( 2 n 2 ) x + 3 ( 2 n 3 ) x 2 + + 2 n ( 2 n 2 n ) x 2 n 1 ........... (1) \large \implies \begin{aligned} 2n(1+x)^{2n-1} = \binom{2n}{1}+2\binom{2n}{2}x+3\binom{2n}{3}x^2+\cdots+2n\binom{2n}{2n}x^{2n-1}\end{aligned}\text{ ........... (1)}

( x + 1 ) 2 n = ( 2 n 0 ) x 2 n + ( 2 n 1 ) x 2 n 1 + + ( 2 n 2 n ) ........... (2) \large\begin{aligned} (x+1)^{2n} = \binom{2n}{0}x^{2n} + \binom{2n}{1}x^{2n-1}+\cdots+\binom{2n}{2n}\end{aligned}\text{ ........... (2)}

Multiplying (1) & (2) we compare the co-efficient of x 2 n 1 x^{2n-1}

2 n ( 1 + x ) 4 n 1 = ( ( 2 n 1 ) + 2 ( 2 n 2 ) x + 3 ( 2 n 3 ) x 2 + + 2 n ( 2 n 2 n ) x 2 n 1 ) ( ( 2 n 0 ) x 2 n Rejected + ( 2 n 1 ) x 2 n 1 + ( 2 n 2 ) x 2 n 2 + ( 2 n 3 ) x 2 n 3 + + ( 2 n 2 n ) ) \large 2n(1+x)^{4n-1} = (\color{#D61F06}{\binom{2n}{1}} + 2\color{#20A900}{\binom{2n}{2}x} + 3\color{#3D99F6}{\binom{2n}{3}x^2} + \cdots+2n\color{#69047E}{\binom{2n}{2n}x^{2n-1}})(\underbrace{\binom{2n}{0}x^{2n}}_{\color{#BA33D6}{\text{Rejected}}}+\color{#D61F06}{\binom{2n}{1}x^{2n-1}}+ \color{#20A900}{\binom{2n}{2}x^{2n-2}} + \color{#3D99F6}{\binom{2n}{3}x^{2n-3}} + \cdots+\color{#69047E}{\binom{2n}{2n}})

The like colours in the parenthesis multiply and power of x in their product is 2n-1 \text{2n-1} , therefore the co-efficient of x 2 n 1 x^{2n-1} in RHS is our desired sum ,

S = ( 2 n 1 ) 2 + 2. ( 2 n 2 ) 2 + 3. ( 2 n 3 ) 2 + 2 n . ( 2 n 2 n ) 2 \large \mathfrak{S} = \dbinom{2n}{1}^2 +2.\dbinom{2n}{2}^2 +3.\dbinom{2n}{3}^2 \cdots \cdots + 2n.\dbinom{2n}{2n}^2

Coefficient of x 2 n 1 in 2 n ( 1 + x ) 4 n 1 is 2 n ( 4 n 1 2 n 1 ) \text{Coefficient of } x^{2n-1} \text{ in } 2n(1+x)^{4n-1}\text{ is } 2n\binom{4n-1}{2n-1}

The coefficients must be equal on both sides so,

S = 2 n ( 4 n 1 2 n 1 ) = 2 n ( 4 n 1 ) ! ( 2 n 1 ) ! 2 n ! = 2 n ( 4 n 1 ) ! ( 2 n 1 ) ! 2 n ( 2 n 1 ) ! = ( 4 n 1 ) ! ( ( 2 n 1 ) ! ) 2 \large\mathfrak{S} = 2n\binom{4n-1}{2n-1} = 2n\frac{(4n-1)!}{(2n-1)!{2n}!}=\cancel{2n}\frac{(4n-1)!}{(2n-1)!\cancel{2n}(2n-1)!}=\boxed{\frac{(4n-1)!}{((2n-1)!)^2}}

Jash Shah
Apr 17, 2016

Let the sum be say equal to P.

P=0 (2nC0)^2+1 (2nC1)^2...........+2n-1 (2nC2n-1)^2+2n (2nC2n)^2

P=0 (2nC2n)^2+1 (2nC2n-1)^2...........+2n-1 (2nC1)^2+2n (2nC0)^2

add both the equations we get

2P=2n{(2nC0)^2+(2nC1)^2..........(2nC2n-1)^2+(2nC2n)^2}

P=n{4nC2n}

Hence P=(4n-1!)/(2n-1!)(2n-1!)

Archit Agrawal
Mar 29, 2017

Just put n=1 to get the answer without solving it.

Yes....did the same way!!!!

A Former Brilliant Member - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...