A calculus problem by Parnab Ghosh

Calculus Level 3

1 3 1 ! + 1 4 2 ! + 1 5 3 ! + + 1 ( n + 2 ) n ! + = ? \dfrac1{3 \cdot 1!} + \dfrac1{4\cdot2!} + \dfrac1{5 \cdot 3!} + \cdots + \dfrac 1{(n+2) n!} + \cdots = \, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 27, 2017

Relevant wiki: Telescoping Series - Sum

Given sum is:

n = 1 1 ( n + 2 ) n ! = n = 1 n + 1 ( n + 2 ) ! = n = 1 ( n + 2 ) 1 ( n + 2 ) ! = n = 1 { ( n + 2 ) ( n + 2 ) ! 1 ( n + 2 ) ! } = n = 1 { 1 ( n + 1 ) ! 1 ( n + 2 ) ! } ( T e l e s c o p i c S e r i e s ) = 1 2 ! = 0.5 \begin{aligned}\sum_{n=1}^{\infty}\dfrac{1}{(n+2)\cdot n!}=&\sum_{n=1}^{\infty}\dfrac{n+1}{ (n+2)!}\\=&\sum_{n=1}^{\infty}\dfrac{(n+2)-1}{(n+2)!}\\=&\sum_{n=1}^{\infty}\left\{\dfrac{(n+2)}{(n+2)!}-\dfrac{1}{(n+2)!}\right\} \\=&\sum_{n=1}^{\infty}\left\{\dfrac{1}{(n+1)!}-\dfrac{1}{(n+2)!}\right\}\\& (\small{\color{cyan}{\mathcal{Telescopic~Series}}})\\\large =&\dfrac{1}{2!}=\boxed{\color{#D61F06}{0.5}}\end{aligned}

Great solution! I am just learning series and your solution has given me another way to solve thanks!

Sravanth C. - 4 years, 4 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...