Summation + Trigonometry

Geometry Level 3

n = 1 18 cos 2 ( 5 n ) \large\sum _{n=1}^{18} \cos ^{ 2 }(5n^{\circ})

Find the value of the summation above.

If the answer is of the form a b \frac{a}{b} , where a a and b b are positive coprime integers, find a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Adarsh Kumar
Jun 22, 2015

We have that cos 2 5 = c o s 2 5 cos 2 85 = sin 2 5 cos 2 10 = cos 2 10 cos 2 80 = sin 2 10 . . . cos 2 40 = cos 2 40 cos 2 50 = sin 2 40 \cos^2 5=cos^2 5\\ \cos^2 85=\sin^2 5 \\ \cos^2 10=\cos^2 10\\ \cos^2 80=\sin^2 10\\ .\\ .\\ .\\ \cos^2 40=\cos^2 40\\ \cos^2 50=\sin^2 40 .Sum of these would be 1 + 1 + 1 + . . . . + 1 = 8 1+1+1+....+1=8 and cos 2 45 = 1 2 \cos^2 45=\dfrac{1}{2} ,hence sum would be 8 + 1 2 = 17 2 8+\dfrac{1}{2}=\dfrac{17}{2} .Hence sum is 19 19 .And done!

Moderator note:

Good pairing up approach.

As always, if the answer is "very nice", think about "How could one get to this very nice answer"?

I overthought it, it seems. Great solution!

Jake Lai - 5 years, 11 months ago
Jake Lai
Jun 22, 2015

Let our sum be S S . The double-angle identity for cosine is 2 cos 2 θ 1 cos ( 2 θ ) 2\cos^{2} \theta -1 \equiv \cos(2\theta) . Using this,

2 S 18 = n = 1 18 ( 2 cos 2 ( 5 n ) 1 ) = n = 1 18 cos ( n π / 18 ) 2S-18 = \sum_{n=1}^{18} \left( 2\cos^{2}(5n^{\circ})-1 \right) = \sum_{n=1}^{18} \cos(n\pi/18)

It is well-known that n = 1 N cos ( n π / N ) = 1 \displaystyle \sum_{n=1}^{N} \cos(n\pi/N) = -1 ; this is left as an exercise for the reader.

Thus, we have 2 S 18 = 1 2S-18 = -1 and so S = 17 2 S = \boxed{\frac{17}{2}} .

Moderator note:

Bonus question : Prove that n = 1 18 cos 4 ( 5 n ) = 25 4 \displaystyle \sum_{n=1}^{18} \cos^4(5n^\circ) = \frac{25}4 .

[Reply to Challenge Master Note]

We make excessive use of the complementary angle formula sin ( x ) = cos ( 9 0 x ) \sin(x)=\cos(90^\circ -x) and the identity sin 2 ( x ) + cos 2 ( x ) = 1 \sin^2(x)+\cos^2(x)=1 and also use the double angle formula 2 sin ( x ) cos ( x ) = sin ( 2 x ) 2\sin(x)\cos(x)=\sin(2x) . Keeping track of them is left as an exercise to the reader.

n = 1 18 cos 4 ( 5 n ) = cos 4 ( 4 5 ) + cos 4 ( 9 0 ) + n = 1 8 ( cos 4 ( 5 n ) + sin 4 ( 5 n ) ) = 1 4 + 0 + n = 1 8 ( ( cos 2 ( 5 n ) + sin 2 ( 5 n ) ) 2 1 2 sin 2 ( 10 n ) ) = 1 4 + n = 1 8 ( 1 1 2 sin 2 ( 10 n ) ) = 1 4 + 8 1 2 n = 1 4 ( sin 2 ( 10 n ) + cos 2 ( 10 n ) ) = 1 4 + 8 1 2 n = 1 4 1 = 1 4 + 8 1 2 × 4 = 25 4 \begin{aligned}\sum_{n=1}^{18}\cos^4(5n^\circ)&=\cos^4(45^\circ)+\cos^4(90^\circ)+\sum_{n=1}^{8}\left(\cos^4(5n^\circ)+\sin^4(5n^\circ)\right)\\&=\frac{1}{4}+0+\sum_{n=1}^8\left(\left(\cos^2(5n^\circ)+\sin^2(5n^\circ)\right)^2-\frac 12\sin^2(10n^\circ)\right)\\&=\frac 14+\sum_{n=1}^8\left(1-\frac 12\sin^2(10n^\circ)\right)\\&=\frac 14+8-\frac 12\sum_{n=1}^4\left(\sin^2(10n^\circ)+\cos^2(10n^\circ)\right)\\&=\frac 14+8-\frac 12\sum_{n=1}^4 1=\frac 14+8-\frac 12\times 4=\frac{25}{4}\end{aligned}


There might be another proof using a method similar to what Jake did in his original solution but I think this is the simplest proof possible.

Prasun Biswas - 5 years, 11 months ago
Chew-Seong Cheong
Jun 22, 2015

n = 1 18 cos 2 5 n = 1 2 n = 1 18 ( 2 cos 2 5 n 1 + 1 ) = 1 2 n = 1 18 ( cos 10 n + 1 ) = 1 2 n = 1 8 ( cos 10 n + cos ( 180 10 n ) ) + 1 2 cos 18 0 + 1 2 ( 18 ) = 1 2 n = 1 8 ( cos 10 n cos 10 n ) + 1 2 ( 1 ) + 9 = 0 1 2 + 9 = 17 2 a + b = 17 + 2 = 19 \begin{aligned} \sum_{n=1}^{18} \cos^2{5n^\circ} & = \frac{1}{2} \sum_{n=1}^{18} \left(2 \cos^2{5n^\circ} - 1 + 1\right) \\ & = \frac{1}{2} \sum_{n=1}^{18} \left(\cos{10n^\circ} + 1\right) \\ & = \frac{1}{2} \sum_{n=1}^{8} \left(\cos{10n^\circ} + \cos{(180-10n)^\circ} \right) + \frac{1}{2} \cos{180^\circ} + \frac{1}{2} (18) \\ & = \frac{1}{2} \sum_{n=1}^{8} \left(\cos{10n^\circ} - \cos { 10 n^\circ} \right) + \frac{1}{2}(-1) + 9\\ & = 0 - \frac{1}{2} + 9 \\ & = \frac{17}{2} \\ \Rightarrow a + b & = 17 + 2 = \boxed{19} \end{aligned}

Moderator note:

Nice use of the supplementary angles formula: cos ( A ) = cos ( 18 0 A ) \cos(A) = -\cos(180^\circ - A) .

Rwit Panda
Jun 23, 2015

The series becomes cos^{2}(5) + cos^{2}(10) + cos^{2}(15)...........+cos^{2}(90). cos(85)=sin(5). Thus cos^{2}(5)+cos^{2}(85)=1. There exist 8 such sets. cos^{2}(45)=0.5 and cos^{2}(90)=0 Thus the summation equals 8.5

I did same!!

Dev Sharma - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...