k = 1 ∑ 2 0 1 + ( 1 + k 1 ) 2 + 1 + ( 1 − k 1 ) 2 1 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Rationalizing the denominator we have:-
k
=
1
∑
2
0
4
k
⎝
⎛
1
+
(
1
+
k
1
)
2
−
1
+
(
1
−
k
1
)
2
⎠
⎞
=
4
1
k
=
1
∑
2
0
(
k
2
+
(
k
+
1
)
2
−
k
2
+
(
k
−
1
)
2
)
L
e
t
f
(
k
)
=
(
k
2
+
(
k
+
1
)
2
−
k
2
+
(
k
−
1
)
2
)
∴
f
(
n
)
+
f
(
n
+
1
)
=
(
n
2
+
(
n
+
1
)
2
−
n
2
+
(
n
−
1
)
2
)
+
(
(
n
+
1
)
2
+
(
n
+
2
)
2
−
(
n
+
1
)
2
+
n
2
)
So it is a telescopic series. Only the second term of k=1
and first term of k=20 are not canceled.
S
o
4
1
k
=
1
∑
2
0
f
(
k
)
=
4
1
∗
(
−
1
+
2
0
2
+
2
1
2
)
=
7
Problem Loading...
Note Loading...
Set Loading...
We can use the identity ( a + b ) ( a − b ) = a − b :
∑ k = 1 2 0 1 + ( 1 + k 1 ) 2 + 1 + ( 1 − k 1 ) 2 1
= ∑ k = 1 2 0 ( 1 + k 1 ) 2 − ( 1 − k 1 ) 2 1 + ( 1 + k 1 ) 2 − 1 + ( 1 − k 1 ) 2
= ∑ k = 1 2 0 4 k ( 1 + ( 1 + k 1 ) 2 − 1 + ( 1 − k 1 ) 2 )
= 4 1 ∑ k = 1 2 0 ( 2 k 2 + 2 k + 1 − 2 k 2 − 2 k + 1 ) .
Note that 2 ( k − 1 ) 2 + 2 ( k − 1 ) + 1 = 2 k 2 − 4 k + 2 + 2 k − 2 + 1 = 2 k 2 − 2 k + 1 . This means the sum telescopes and we find:
= 4 1 ∑ k = 1 2 0 ( 2 k 2 + 2 k + 1 − 2 ( k − 1 ) 2 + 2 ( k − 1 ) + 1 )
= 4 1 ( 2 ( 2 0 ) 2 + 2 ( 2 0 ) + 1 − 2 ( 0 ) 2 + 2 ( 0 ) + 1 )
= 4 1 ( 2 9 − 1 ) = 7 .