Summation vs Radicals

Algebra Level 4

k = 1 20 1 1 + ( 1 + 1 k ) 2 + 1 + ( 1 1 k ) 2 = ? \large\displaystyle\sum_{k=1}^{20}\frac1{\sqrt{1+\left(1+\frac{1}{k}\right)^2}+\sqrt{1+\left(1-\frac{1}{k}\right)^2}}=\ ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tijmen Veltman
Jun 22, 2015

We can use the identity ( a + b ) ( a b ) = a b (\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b :

k = 1 20 1 1 + ( 1 + 1 k ) 2 + 1 + ( 1 1 k ) 2 \sum_{k=1}^{20} \frac1{\sqrt{1+\left(1+\frac1k\right)^2}+\sqrt{1+\left(1-\frac1k\right)^2}}

= k = 1 20 1 + ( 1 + 1 k ) 2 1 + ( 1 1 k ) 2 ( 1 + 1 k ) 2 ( 1 1 k ) 2 =\sum_{k=1}^{20} \frac{\sqrt{1+\left(1+\frac1k\right)^2}-\sqrt{1+\left(1-\frac1k\right)^2}} {\left(1+\frac1k\right)^2-\left(1-\frac1k\right)^2}

= k = 1 20 k 4 ( 1 + ( 1 + 1 k ) 2 1 + ( 1 1 k ) 2 ) =\sum_{k=1}^{20}\frac{k}4 \left(\sqrt{1+\left(1+\frac1k\right)^2}-\sqrt{1+\left(1-\frac1k\right)^2}\right)

= 1 4 k = 1 20 ( 2 k 2 + 2 k + 1 2 k 2 2 k + 1 ) . =\frac14\sum_{k=1}^{20}\left(\sqrt{2k^2+2k+1}-\sqrt{2k^2-2k+1}\right).

Note that 2 ( k 1 ) 2 + 2 ( k 1 ) + 1 = 2 k 2 4 k + 2 + 2 k 2 + 1 = 2 k 2 2 k + 1 2(k-1)^2+2(k-1)+1=2k^2-4k+2+2k-2+1=2k^2-2k+1 . This means the sum telescopes and we find:

= 1 4 k = 1 20 ( 2 k 2 + 2 k + 1 2 ( k 1 ) 2 + 2 ( k 1 ) + 1 ) =\frac14\sum_{k=1}^{20}\left(\sqrt{2k^2+2k+1}-\sqrt{2(k-1)^2+2(k-1)+1}\right)

= 1 4 ( 2 ( 20 ) 2 + 2 ( 20 ) + 1 2 ( 0 ) 2 + 2 ( 0 ) + 1 ) =\frac14\left(\sqrt{2(20)^2+2(20)+1}-\sqrt{2(0)^2+2(0)+1}\right)

= 1 4 ( 29 1 ) = 7 . =\frac14(29-1)=\boxed{7}.

Rationalizing the denominator we have:-
k = 1 20 k 4 ( 1 + ( 1 + 1 k ) 2 1 + ( 1 1 k ) 2 ) = 1 4 k = 1 20 ( k 2 + ( k + 1 ) 2 k 2 + ( k 1 ) 2 ) L e t f ( k ) = ( k 2 + ( k + 1 ) 2 k 2 + ( k 1 ) 2 ) f ( n ) + f ( n + 1 ) = ( n 2 + ( n + 1 ) 2 n 2 + ( n 1 ) 2 ) + \displaystyle \sum_{k=1}^{20}\frac{k}4 \left(\sqrt{1+\left(1+\frac1k\right)^2}-\sqrt{1+\left(1-\frac1k\right)^2}\right)\\ \displaystyle =\dfrac 1 4 \sum_{k=1}^{20} \left(\sqrt{k^2+\left(k+1\right)^2}-\sqrt{k^2+\left(k-1\right)^2}\right)\\ Let ~f(k)= \left(\sqrt{k^2+\left(k+1\right)^2}-\sqrt{k^2+\left(k-1\right)^2}\right)\\\therefore~f(n)+f(n+1)\\= \left(\color{#D61F06}{ \sqrt{n^2+\left(n+1\right)^2} }-\sqrt{n^2+\left(n-1\right)^2}~\right)\\+ ( ( n + 1 ) 2 + ( n + 2 ) 2 ( n + 1 ) 2 + n 2 ) So it is a telescopic series. Only the second term of k=1 and first term of k=20 are not canceled. S o 1 4 k = 1 20 f ( k ) = 1 4 ( 1 + 2 0 2 + 2 1 2 ) = 7 \left( \sqrt{ \left(n+1\right)^2+\left(n+2\right)^2 } - \color{#D61F06}{ \sqrt{\left(n+1\right)^2 +n^2}~}\right)\\\text {So it is a telescopic series. Only the second term of k=1 }\\ \text {and first term of k=20 are not canceled. }\\So ~\displaystyle ~\dfrac 1 4 \sum_{k=1}^{20} f(k)=\dfrac 1 4 *(-1 +\sqrt{20^2+21^2})=~~~~~\color{#3D99F6}{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...