Summation with two sequences

Algebra Level 5

Let a n = 2 n n ( n + 2 ) a_n=\dfrac{2^n}{n(n+2)} and b n = 3 n 5 n + 18 b_n=\dfrac{3^n}{5n+18} . Find the value of n = 1 a n b n \large\displaystyle\sum_{n=1}^{\infty}\dfrac{a_n}{b_n}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 19, 2015

n = 1 a n b n = n = 1 2 n ( 5 n + 18 ) 3 n n ( n + 2 ) = n = 1 [ ( 2 3 ) n ( 5 n + 2 + 9 ( 1 n 1 n + 2 ) ) ] = n = 1 [ ( 2 3 ) n ( 9 n 4 n + 2 ) ] = n = 1 2 n 3 n 2 n n = 1 2 n + 2 3 n ( n + 2 ) = n = 1 2 n 3 n 2 n n = 3 2 n 3 n 2 n = n = 1 2 2 n 3 n 2 n = 2 3 1 + 2 2 3 0 2 = 6 + 2 = 8 \begin{aligned} \sum_{n=1}^\infty \frac{a_n}{b_n} & = \sum_{n=1}^\infty \frac{2^n(5n+18)}{3^nn(n+2)} \\ & = \sum_{n=1}^\infty \left[ \left(\frac{2}{3}\right)^n \left(\frac{5}{n+2} + 9\left(\frac{1}{n} - \frac{1}{n+2} \right) \right) \right] \\ & = \sum_{n=1}^\infty \left[ \left(\frac{2}{3}\right)^n \left(\frac{9}{n} - \frac{4}{n+2}\right) \right] \\ & = \sum_{n=1}^\infty \frac{2^n}{3^{n-2}n} - \sum_{n=1}^\infty \frac{2^{n+2}}{3^n(n+2)} \\ & = \sum_{n=1}^\infty \frac{2^n}{3^{n-2}n} - \sum_{n=3}^\infty \frac{2^{n}}{3^{n-2}n} \\ & = \sum_{n=1}^2 \frac{2^n}{3^{n-2}n} = \frac{2}{3^{-1}} + \frac{2^2}{3^{0}2} = 6 + 2 = \boxed{8} \end{aligned}

Moderator note:

Good observation with the telescoping series. What made you think about it?

It was just trial and error and step 3 with numbers 2, 4, 3 and 9 suggested it.

Chew-Seong Cheong - 5 years, 10 months ago

5 n + 18 n ( n + 2 ) = 9 n 4 n + 2 Partial fraction for telescoping series. n = 1 a n b n = n = 1 2 n ( 5 n + 18 ) 3 n n ( n + 2 ) = n = 1 ( 2 3 ) n ( 9 n 4 n + 2 ) . . . . . . . . . . . . . . . ( a ) = n = 1 2 n 3 n 2 n n = 1 2 n + 2 3 n ( n + 2 ) . . . . . . . . . . . . . . ( b ) = n = 1 2 2 n 3 n 2 n + n = 3 2 n 3 n 2 n n = 1 2 n + 2 3 n ( n + 2 ) = n = 1 2 2 n 3 n 2 n + n = 1 2 n + 2 3 n ( n + 2 ) n = 1 2 n + 2 3 n ( n + 2 ) . . ( c ) = n = 1 2 2 n 3 n 2 n = 2 3 1 + 2 2 3 0 2 = 6 + 2 = 8 This is almost the same as the solution by Chew-Seong Cheong above. His conversion from 1 t o 3 I feel is better than my 3 t o 1 in the last but one lines (c). Lines (a) and (b) I have taken from him t o i m p r o v e m y s o l u t i o n . NOTE:- If the limit was finite in place of infinity say up to 2015, we would have (n+2)-n= TWO more terms to add algebraically. n = 2014 2015 2 n + 2 3 n ( n + 2 ) \begin{aligned} \dfrac{5n+18}{n(n+2)}&=\dfrac 9 n -\dfrac 4 {n+2}~~~~\text{Partial fraction for telescoping series.}\\ \therefore\sum_{n=1}^\infty \frac{a_n}{b_n} & = \sum_{n=1}^\infty \frac{2^n(5n+18)}{3^nn(n+2)} \\ & = \sum_{n=1}^\infty \left(\frac{2}{3}\right)^n \left(\frac{9}{n} - \frac{4}{n+2}\right) ...............(a)\\ & = \sum_{n=1}^\infty \frac{2^n}{3^{n-2}n} - \sum_{n=1}^\infty \frac{2^{n+2}}{3^n(n+2)} ..............(b) \\ & = \sum_{n=1}^2 \frac{2^n}{3^{n-2}n} +\sum_{n=3}^\infty \frac{2^n}{3^{n-2}n}- \sum_{n=1}^\infty \frac{2^{n+2}}{3^n(n+2)} \\ & = \sum_{n=1}^2 \frac{2^n}{3^{n-2}n} +\color{#3D99F6}{\sum_{n=1}^\infty \frac{2^{n+2} } {3^n(n+2)}- \sum_{n=1}^\infty \frac{2^{n+2}}{3^n(n+2)}} ..(c)\\ & = \sum_{n=1}^2 \frac{2^n}{3^{n-2}n} = \frac{2}{3^{-1}} + \frac{2^2}{3^{0}2} = 6 + 2 =~~~~~\color{#D61F06}{ \boxed{8}} \end{aligned} \\ \text{This is almost the same as the solution by Chew-Seong Cheong above.}\\\text{His conversion from } \displaystyle \sum_1~ to ~\sum_3 \text{ I feel is better than my } \sum_3 to \sum_1 \\ \text{in the last but one lines (c). Lines (a) and (b) I have taken from him}\\ to~ improve~ my~ solution. \\ \displaystyle \color{#EC7300} {\text{NOTE:- If the limit was finite in place of infinity say up to 2015,}\\ \text{we would have {(n+2)-n}= TWO more terms to add algebraically. }\\ - \sum_{n=2014}^{2015}\dfrac{2^{n+2}}{3^n(n+2)} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...