Summations

Algebra Level 4

Find the real value of X > 1 X>1 such that N = 1 N X N = 10 9 \displaystyle \sum_{N=1}^\infty \dfrac N{X^N} = \dfrac{10}9 .


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

N = 1 x N = x 1 x for x < 1 d d x N = 1 x N = d d x ( x 1 x ) Differentiate both sides w.r.t x N = 1 N x N 1 = 1 ( 1 x ) 2 Multiply both sides with x N = 1 N x N = x ( 1 x ) 2 Putting x = 1 X N = 1 N X N = 1 X ( 1 1 X ) 2 x ( 1 x ) 2 = 10 9 9 x = 10 ( 1 x ) 2 10 x 2 29 x + 10 = 0 ( 5 x 2 ) ( 2 x 5 ) = 0 x = 2 5 Note that x < 1 X = 5 2 = 2.5 \begin{aligned} \sum_{N=1}^\infty x^N & = \frac x{1-x} & \small \color{#3D99F6}{\text{for }x<1} \\ \frac d{dx} \sum_{N=1}^\infty x^N & = \frac d{dx}\left(\frac x{1-x}\right) & \small \color{#3D99F6}{\text{Differentiate both sides w.r.t }x} \\ \sum_{N=1}^\infty Nx^{N-1} & = \frac 1{(1-x)^2} & \small \color{#3D99F6}{\text{Multiply both sides with }x} \\ \sum_{N=1}^\infty Nx^{N} & = \frac x{(1-x)^2} & \small \color{#3D99F6}{\text{Putting }x=\frac 1X} \\ \sum_{N=1}^\infty \frac N{X^N} & = \frac {\frac 1X}{\left(1-\frac 1X\right)^2} \\ \implies \frac x{(1-x)^2} & = \frac {10}9 \\ 9x & = 10(1-x)^2 \\ 10x^2 - 29x + 10 & = 0 \\ (5x-2)(2x-5) & = 0 \\ \implies x & = \frac 25 & \small \color{#3D99F6}{\text{Note that }x<1} \\ X & = \frac 52 = \boxed{2.5} \end{aligned}

Rocco Dalto
Sep 3, 2016

L e t Let X > 1. X > 1. N = 1 N X N \sum_{N = 1}^{\infty} \frac{N}{X^N} = 1 X \frac{1}{X} * ( 1 + 1 X (1 + \frac{1}{X} + 1 X 2 \frac{1}{X^2} + . . . ) + + ...) + 1 X 2 \frac{1}{X^2} * ( 1 + 1 X (1 + \frac{1}{X} + 1 X 2 \frac{1}{X^2} + . . ) + . . . = + ..) + ... = X X 1 \frac{X}{X - 1} * 1 X \frac{1}{X} * X X 1 = \frac{X}{X - 1} = X ( X 1 ) 2 = 10 9 \frac{X}{(X - 1)^2} = \frac{10}{9} \implies 10 x 2 29 x + 10 = 0 10x^2 - 29x + 10 = 0 \implies X = 5 / 2 , 2 / 5. X = 5/2,2/5. F o r For X > 1 X > 1 t h e the p o s i t i v e positive s e r i e s series N = 1 N X N \sum_{N = 1}^{\infty} \frac{N}{X^N} c o n v e r g e s converges \therefore c h o o s e choose X = 5 / 2. X = 5/2.

N = 1 N X N = 1 x + 2 x 2 + 3 x 3 + . . . = 10 9 \sum_{N=1}^\infty \dfrac N{X^N} = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3} + ... = \frac{10}{9}

1 x + ( 1 x 2 + 1 x 2 ) + ( 1 x 3 + 1 x 3 + 1 x 3 ) + . . . = 10 9 \frac{1}{x} + (\frac{1}{x^2} + \frac{1}{x^2}) + (\frac{1}{x^3} + \frac{1}{x^3} + \frac{1}{x^3}) + ... = \frac{10}{9}

( 1 x + 1 x 2 + 1 x 3 + . . . ) + ( 1 x 2 + 1 x 3 + 1 x 4 + . . . ) + ( 1 x 3 + 1 x 4 + 1 x 5 + . . . ) + . . . . = 10 9 ( \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + ...) + ( \frac{1}{x^2} + \frac{1}{x^3} + \frac{1}{x^4} + ...) + ( \frac{1}{x^3} + \frac{1}{x^4} + \frac{1}{x^5} + ...) + .... = \frac{10}{9}

1 x 1 1 x + 1 x 2 1 1 x + 1 x 3 1 1 x + . . . = 10 9 \frac{\frac{1}{x}}{1-\frac{1}{x}} + \frac{\frac{1}{x^2}}{1-\frac{1}{x}} + \frac{\frac{1}{x^3}}{1-\frac{1}{x}} + ... = \frac{10}{9}

1 x + 1 x 2 + 1 x 3 + . . . = 10 9 ( 1 1 x ) E P M D \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + ... = \frac{10}{9} (1 - \frac{1}{x}) \boxed{EPMD}

1 x 1 1 x = 10 9 ( 1 1 x ) \frac{\frac{1}{x}}{1 - \frac{1}{x}} = \frac{10}{9} (1 - \frac{1}{x})

After a little simplification, the equation becomes a quadratic equation with roots 2 5 , 5 2 \frac{2}{5}, \frac{5}{2} . We take x = 5 2 \boxed{x=\frac{5}{2}} since x > 1 x>1 is specified in the question.

Why not 0.4?

I Gede Arya Raditya Parameswara - 4 years, 7 months ago

Log in to reply

Since the question says that x x must be more than 1 1 . Since 0.4 0.4 is lesser than 1 1 , it cannot be a solution.

Arkajyoti Banerjee - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...