Summations and Geometric Series

Algebra Level 2

If n = 0 1 k n = α n = 1 1 k n , \sum_{n=0}^{\infty} \frac{1}{k^n} = \alpha \cdot \sum_{n=1}^{\infty} \frac{1}{k^n}, what is the value of α \alpha ?

2 k + 1 k 2k + \frac{1}{k} k k k 1 k-1 n = 1 1 k n \sum_{n=1}^{\infty} \frac{1}{k^n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since n = 0 1 k n = α n = 1 1 k n , \sum_{n=0}^{\infty} \frac{1}{k^n} = \alpha \cdot \sum_{n=1}^{\infty} \frac{1}{k^n}, α \alpha must equal n = 0 1 k n n = 1 1 k n . \frac{\sum_{n=0}^{\infty} \frac{1}{k^n}}{\sum_{n=1}^{\infty} \frac{1}{k^n}}. So, to find α \alpha we must simply find the values of n = 1 1 k n \sum_{n=1}^{\infty} \frac{1}{k^n} and n = 0 1 k n \sum_{n=0}^{\infty} \frac{1}{k^n} , and then divide. We can find the value of n = 1 1 k n \sum_{n=1}^{\infty} \frac{1}{k^n} by using the geometric series formula. Expanding n = 1 1 k n \sum_{n=1}^{\infty} \frac{1}{k^n} gives: 1 k + 1 k 2 + 1 k 3 + 1 k 4 = 1 k 1 1 k = 1 k k k 1 k = 1 k k 1 k = 1 k k k 1 = 1 k 1 . \frac{1}{k}+\frac{1}{k^2} + \frac{1}{k^3} + \frac{1}{k^4} \dots =\frac{\frac{1}{k}}{1-\frac{1}{k}} = \frac{\frac{1}{k}}{\frac{k}{k} - \frac{1}{k}} = \frac{\frac{1}{k}}{\frac{k-1}{k}} = \frac{1}{k} \cdot \frac{k}{k-1} = \boxed{\frac{1}{k-1}}. We can use the value of n = 1 1 k n \sum_{n=1}^{\infty} \frac{1}{k^n} (above) to then find the value of n = 0 1 k n \sum_{n=0}^{\infty} \frac{1}{k^n} : n = 0 1 k n = 1 k 0 + n = 1 1 k n = 1 1 + 1 k 1 = k 1 k 1 + 1 k 1 = k 1 + 1 k 1 = k k 1 . \sum_{n=0}^{\infty} \frac{1}{k^n} = \frac{1}{k^0} + \sum_{n=1}^{\infty} \frac{1}{k^n} = \frac{1}{1}+\frac{1}{k-1} = \frac{k-1}{k-1}+\frac{1}{k-1} = \frac{k-1+1}{k-1} =\frac{k}{k-1}. Since we now know the values of n = 1 1 k n \sum_{n=1}^{\infty} \frac{1}{k^n} ( 1 k 1 ) \left( \frac{1}{k-1} \right) and n = 0 1 k n \sum_{n=0}^{\infty} \frac{1}{k^n} ( k k 1 ) \left( \frac{k}{k-1} \right) , we must now simply divide to find α \alpha : α = n = 0 1 k n n = 1 1 k n = k k 1 1 k 1 = k k 1 k 1 1 = k \alpha=\frac{\sum_{n=0}^{\infty} \frac{1}{k^n}}{\sum_{n=1}^{\infty} \frac{1}{k^n}} = \frac{\frac{k}{k-1}}{\frac{1}{k-1}}=\frac{k}{k-1} \cdot \frac{k-1}{1} = \boxed{k} So the value of α \alpha is k \boxed{k} .

Edwin Gray
Sep 19, 2018

No where is it mentioned except by implication, that k must be > 1. If we let alpha = k, and multiply it into the series on the right we have a sum from n = 1 to infinity of 1/[k^(n - 1)} Letting m = n -1, we have the sum from m = 0 to infinity of 1/[(k^m)], agreeing with the sum on the left. Ed Gray

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...