Summation*summation = summation

Calculus Level 5

S = [ ( n = 0 ( 1 4 ) n x 2 n ( 2 n + 1 ) ! ) ( n = 0 ( 1 4 ) n x 2 n + 1 ( 2 n ) ! ) ] 2 S = \left[\left(\sum_{n=0}^\infty \left(\frac{-1}{4}\right)^n \frac{x^{2n}}{(2n+1)!}\right)\left(\sum_{n=0}^\infty \left(\frac{-1}{4}\right)^n \frac{x^{2n+1}}{(2n)!}\right)\right]^2

If S S can be written in the form:

a [ n = 0 ( 1 b ) n x c n ( d n ) ! k = 1 n ( 2 k 1 ) ] 2 {\color{#D61F06}a} - \left[\sum_{n=0}^\infty \left(\frac{-1}{ \color{#D61F06}b}\right)^n \frac{x^{{\color{#D61F06}c}n}}{({ \color{#D61F06}d}n)!\prod_{k=1}^n(2k-1)}\right]^2

where a {\color{#D61F06}a} , b {\color{#D61F06}b} , c {\color{#D61F06}c} and d {\color{#D61F06}d} are positive integers, find ( a + b ) ( c + d ) 3 \dfrac{({\color{#D61F06}a} + {\color{#D61F06}b})({\color{#D61F06}c} + {\color{#D61F06}d})}{3} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 24, 2017

S = [ ( n = 0 ( 1 ) n x 2 n ( 2 n + 1 ) ! 4 n ) ( n = 0 ( 1 ) n x 2 n + 1 ( 2 n ) ! 4 n ) ] 2 = [ ( 2 x n = 0 ( 1 ) n ( 2 n + 1 ) ! ( x 2 ) 2 n + 1 ) ( x n = 0 ( 1 ) n ( 2 n ) ! ( x 2 ) 2 n ) ] 2 = [ 2 sin x 2 cos x 2 ] 2 = [ sin x ] 2 = sin 2 x = 1 cos 2 x = 1 [ n = 0 ( 1 ) n x 2 n ( 2 n ) ! ] 2 Note that 1 3 5 . . . ( 2 n 1 ) = ( 2 n ) ! 2 n n ! = 1 [ n = 0 ( 1 ) n x 2 n 2 n ( 1 n ) ! k = 1 n ( 2 k 1 ) ] 2 \begin{aligned} S & = \left[\left(\sum_{n=0}^\infty \frac {(-1)^nx^{2n}}{(2n+1)!4^n}\right)\left(\sum_{n=0}^\infty \frac {(-1)^nx^{2n+1}}{(2n)!4^n}\right)\right]^2 \\ & = \left[\left(\frac 2x \sum_{n=0}^\infty \frac {(-1)^n}{(2n+1)!}\left(\frac x2\right)^{2n+1}\right) \left( x \sum_{n=0}^\infty \frac {(-1)^n}{(2n)!}\left(\frac x2\right)^{2n}\right)\right]^2 \\ & = \left[2\sin \frac x2 \cos \frac x2 \right]^2 = \left[\sin x \right]^2 = \sin^2 x \\ & = 1 - \cos^2 x \\ & = 1 - \left[\sum_{n=0}^\infty \frac {(-1)^nx^{2n}}{\color{#3D99F6}(2n)!}\right]^2 & \small \color{#3D99F6} \text{Note that } 1\cdot 3 \cdot 5 \cdot ... \cdot (2n-1) = \frac {(2n)!}{2^nn!} \\ & = {\color{#D61F06}1} - \left[\sum_{n=0}^\infty \frac {(-1)^nx^{{\color{#D61F06}2}n}}{\color{#3D99F6} {\color{#D61F06}2}^n ({\color{#D61F06}1}n)! \prod_{k=1}^n (2k-1)}\right]^2 \end{aligned}

( a + b ) ( c + d ) 3 = ( 1 + 2 ) ( 2 + 1 ) 3 = 3 \implies \dfrac {(a+b)(c+d)}3 = \dfrac {(1+2)(2+1)}3 = \boxed{3}

Mrudul Aluri
Jul 24, 2017

S = [ ( n = 0 ( 1 4 ) n x 2 n ( 2 n + 1 ) ! ) ( n = 0 ( 1 4 ) n x 2 n + 1 ( 2 n ) ! ) ] 2 = [ ( n = 0 ( 1 2 2 ) n x 2 n ( 2 n + 1 ) ! ) ( n = 0 ( 1 2 2 ) n x 2 n x ( 2 n ) ! ) ] 2 = [ ( n = 0 ( 1 ) n x 2 n x 2 2 n ( 2 n + 1 ) ! ) ( n = 0 ( 1 ) n x 2 n 2 2 n ( 2 n ) ! ) ] 2 = [ ( n = 0 2 2 ( 1 ) n x 2 n + 1 2 2 n ( 2 n + 1 ) ! ) ( n = 0 ( 1 ) n x 2 n 2 2 n ( 2 n ) ! ) ] 2 = [ 2 ( n = 0 ( 1 ) n ( x 2 ) 2 n + 1 ( 2 n + 1 ) ! ) ( n = 0 ( 1 ) n ( x 2 ) 2 n ( 2 n ) ! ) ] 2 The above summations are the Taylor Series expansions for the sine and cosine function respectively. Therefore, = [ 2 sin ( x 2 ) cos ( x 2 ) ] 2 By the trigonometric identity, 2 sin ( x 2 ) cos ( x 2 ) = sin x S = sin 2 x = 1 cos 2 x Writing the Taylor Series expansion of cos, we get - S = 1 ( n = 0 ( 1 ) n x 2 n ( 2 n ) ! ) 2 = 1 ( n = 0 ( 1 ) n x 2 n k = 1 n ( 2 k ) k = 1 n ( 2 k 1 ) ) 2 see note 1 = 1 ( n = 0 ( 1 ) n x 2 n 2 n n ! k = 1 n ( 2 k 1 ) ) 2 see note 2 = 1 ( n = 0 ( 1 2 ) n x 2 n ( 1 n ) ! k = 1 n ( 2 k 1 ) ) 2 , where, a = 1 , b = 2 , c = 2 and d = 1 ( ( a + b ) ( c + d ) 3 ) = ( ( 1 + 2 ) ( 2 + 1 ) 3 ) = 3 3 3 = 3 \displaystyle S = \left[\left(\sum_{n=0}^\infty \left(\frac{-1}{4}\right)^n \frac{x^{2n}}{(2n+1)!}\right)\left(\sum_{n=0}^\infty \left(\frac{-1}{4}\right)^n \frac{x^{2n+1}}{(2n)!}\right)\right]^2 \\ =\displaystyle \left[\left(\sum_{n=0}^\infty \left(\frac{-1}{\color{#3D99F6}2^2}\right)^n \frac{x^{2n}}{(2n+1)!}\right)\left(\sum_{n=0}^\infty \left(\frac{-1}{\color{#3D99F6}2^2}\right)^n \frac{x^{2n}\cdot {\color{#3D99F6}x}}{(2n)!}\right)\right]^2 \\ = \displaystyle \left[\left(\sum_{n=0}^\infty \frac{(-1)^n x^{2n}\cdot{\color{#3D99F6}x}}{2^{2n}(2n+1)!}\right)\left(\sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{2^{2n}(2n)!}\right)\right]^2 \\ = \displaystyle \left[\left(\sum_{n=0}^\infty \frac 22 \cdot \frac{(-1)^n x^{2n+1}}{2^{2n}(2n+1)!}\right)\left(\sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{2^{2n}(2n)!}\right)\right]^2 \\ = \displaystyle \left[2\left(\sum_{n=0}^\infty \frac{(-1)^n \left(\frac{x}{2}\right)^{2n+1}}{(2n+1)!}\right)\left(\sum_{n=0}^\infty \frac{(-1)^n \left(\frac{x}{2}\right)^{2n}}{(2n)!}\right)\right]^2 \\ \text{The above summations are the Taylor Series expansions for the sine and cosine function respectively. Therefore, } \\ = \left[\displaystyle 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)\right]^2 \quad\quad \small \color{#3D99F6} \text{By the trigonometric identity, } 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = \sin x \\ \implies S = \sin^2 x = \boxed{1 - \cos^2 x} \\ \text{Writing the Taylor Series expansion of cos, we get - } \\ S = \displaystyle 1 - \left(\sum_{n=0}^\infty \frac{(-1)^nx^{2n}}{(2n)!}\right)^2 \\ = \displaystyle 1 - \left(\sum_{n=0}^\infty \frac{(-1)^nx^{2n}}{\prod_{k=1}^n (2k)\prod_{k=1}^n (2k-1)}\right)^2 \quad\quad \small \color{#3D99F6} \text{see note 1} \\ = \displaystyle 1 - \left(\sum_{n=0}^\infty \frac{(-1)^nx^{2n}}{{\color{#3D99F6}2^n n!}\prod_{k=1}^n (2k-1)}\right)^2 \quad\quad \small \color{#3D99F6} \text{see note 2} \\ = \displaystyle {\color{#D61F06}1} - \left(\sum_{n=0}^\infty \left(\frac{-1}{\color{#D61F06}2}\right)^n \frac{x^{{\color{#D61F06}2}n}}{({\color{#D61F06}1}n)!\prod_{k=1}^n (2k-1)}\right)^2 , \small \text{where, } {\color{#D61F06}a} = 1, \ {\color{#D61F06}b} = 2, \ {\color{#D61F06}c} = 2 \text{ and } {\color{#D61F06}d} = 1 \\ \implies \displaystyle \left(\frac{({\color{#D61F06}a} + {\color{#D61F06}b})({\color{#D61F06}c} + {\color{#D61F06}d})}{3}\right) = \displaystyle \left(\frac{({\color{#D61F06}1} + {\color{#D61F06}2})({\color{#D61F06}2} + {\color{#D61F06}1})}{3}\right) \\ = \displaystyle \frac{3\cdot3}{3} = \boxed{3} \\

Note 1 :

( 2 n ) ! can be written as a product of n even numbers and n odd numbers by the formula ( 2 n ) ! = k = 1 n ( 2 k ) k = 1 n ( 2 k 1 ) (2n)! \text{ can be written as a product of n even numbers and n odd numbers by the formula } - \\ (2n)! = \displaystyle \prod_{k=1}^n(2k)\prod_{k=1}^n(2k-1)

Note 2:

k = 1 n ( 2 k ) \displaystyle \prod_{k=1}^n(2k) is the product of n even numbers, which can be represented as -

( 2 1 ) ( 2 2 ) ( 2 3 ) . . . ( 2 n ) (2\cdot1)(2\cdot2)(2\cdot3)...(2\cdot n) . Taking out 2 common from all n terms, we get -

( 2 1 ) ( 2 2 ) ( 2 3 ) . . . ( 2 n ) = 2 n n ! (2\cdot1)(2\cdot2)(2\cdot3)...(2\cdot n) = \boxed{2^n n!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...