Let a 1 , a 2 , a 3 , … , a 2 0 1 8 be the roots of the polynomial
x 2 0 1 8 + x 2 0 1 7 + ⋯ + x 2 + x − 1 3 4 5 = 0 .
Compute n = 1 ∑ 2 0 1 8 1 − a n 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Vishruth Bharath , just a note that in the question, if you enclose your entire subscript {2018} in these brackets, they will all appear subscript, not just the first digit, whereas the 018 currently is large
Bravo! Great solution.
Let y = x 2 0 1 8 + x 2 0 1 7 + . . . . + x − 1 3 4 5
Thus, y = ( x − a 1 ) ( x − a 2 ) . . . . . ( x − a 2 0 1 8 ) , where a 1 , a 2 and so on are the roots.
l n ( y ) = ∑ n = 1 2 0 1 8 l n ( x − a n )
Differentiating: y 1 d x d y = ∑ n = 1 2 0 1 8 x − a n 1
Since we require the RHS value for x=1, all that remains to be done is finding y ( 1 ) and y ′ ( 1 ) .
y ( 1 ) = 1 ∗ 2 0 1 8 − 1 3 4 5 = 6 7 3
y ′ ( x ) = 2 0 1 8 x 2 0 1 7 + 2 0 1 7 x 2 0 1 6 + . . . + 1 = > y ′ ( 1 ) = 2 ( 2 0 1 8 ) ( 2 0 1 9 )
Thus, the desired sum is 3 0 2 7 .
Problem Loading...
Note Loading...
Set Loading...
Let y = 1 − x 1 Expressing x in terms of y , we have x = 1 − y 1 .
Substituting this into our original equation, we get ( 1 − y 1 ) 2 0 1 8 + ( 1 − y 1 ) 2 0 1 7 + . . . + ( 1 − y 1 ) 2 + ( 1 − y 1 ) 1 − 1 3 4 5 = 0
( y 2 0 1 8 ) ( ( 1 − y 1 ) 2 0 1 8 + ( 1 − y 1 ) 2 0 1 7 + . . . + ( 1 − y 1 ) 2 + ( 1 − y 1 ) 1 − 1 3 4 5 ) = 0
( y − 1 ) 2 0 1 8 + y ( y − 1 ) 2 0 1 7 + y 2 ( y − 1 ) 2 0 1 6 + . . . + y 2 0 1 6 ( y − 1 ) 2 + y 2 0 1 7 ( y − 1 ) − 1 3 4 5 y 2 0 1 8 = 0
In the expansion above,
Coefficient of y 2 0 1 8 = 1 ⋅ 2 0 1 8 − 1 3 4 5 = 6 7 3
Coefficient of y 2 0 1 7 = − 2 0 1 8 − 2 0 1 7 − 2 0 1 6 − . . . − 1 = − ( 1 + 2 + 3 + . . . + 2 0 1 7 + 2 0 1 8 ) = − 2 2 0 1 8 ⋅ 2 0 1 9
By Vieta's Formula, if y k for k = 1 , 2 , 3 , . . . 2 0 1 8 are roots for the equation above in terms of y,
We get ∑ k = 1 2 0 1 8 y k = 6 7 3 2 2 0 1 8 ⋅ 2 0 1 9 = 3 0 2 7
Hence, returning to our original question, ∑ n = 1 2 0 1 8 1 − a n 1 = 3 0 2 7