Summer Is Almost Here?

Algebra Level 3

Let a 1 , a 2 , a 3 , , a 2018 a_1, a_2, a_3, \dots, a_{2018} be the roots of the polynomial

x 2018 + x 2017 + + x 2 + x 1345 = 0. {{x^{2018}+x^{2017}+\dots+x^2+x-1345=0.}}

Compute n = 1 2018 1 1 a n . \sum_{n=1}^{2018}\frac{1}{1-a_n}.

3029 3029 2034 2034 3027 3027 1029 1029 2345 2345

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Donglin Loo
May 17, 2018

Let y = 1 1 x y=\cfrac{1} {1-x} Expressing x x in terms of y y , we have x = 1 1 y x =1-\cfrac{1}{y} .

Substituting this into our original equation, we get ( 1 1 y ) 2018 + ( 1 1 y ) 2017 + . . . + ( 1 1 y ) 2 + ( 1 1 y ) 1 1345 = 0 (1-\cfrac{1}{y})^{2018}+(1-\cfrac{1}{y})^{2017}+...+(1-\cfrac{1}{y})^{2}+(1-\cfrac{1}{y})^{1}-1345=0

( y 2018 ) ( ( 1 1 y ) 2018 + ( 1 1 y ) 2017 + . . . + ( 1 1 y ) 2 + ( 1 1 y ) 1 1345 ) = 0 (y^{2018})((1-\cfrac{1}{y})^{2018}+(1-\cfrac{1}{y})^{2017}+...+(1-\cfrac{1}{y})^{2}+(1-\cfrac{1}{y})^{1}-1345) =0

( y 1 ) 2018 + y ( y 1 ) 2017 + y 2 ( y 1 ) 2016 + . . . + y 2016 ( y 1 ) 2 + y 2017 ( y 1 ) 1345 y 2018 = 0 (y-1) ^{2018} +y(y-1) ^{2017}+y^{2} (y-1) ^{2016} +... +y^{2016} (y-1) ^{2} +y^{2 017}(y-1)-1345y^{2018}=0

In the expansion above,

Coefficient of y 2018 = 1 2018 1345 = 673 y^{2018}=1\cdot 2018-1345=673

Coefficient of y 2017 = 2018 2017 2016 . . . 1 = ( 1 + 2 + 3 + . . . + 2017 + 2018 ) = 2018 2019 2 y^{2017}=-2018-2017-2016-...-1=-(1+2+3+...+2017+2018) =-\cfrac{2018\cdot2019}{2}

By Vieta's Formula, if y k y_{k} for k = 1 , 2 , 3 , . . . 2018 k=1,2,3,...2018 are roots for the equation above in terms of y,

We get k = 1 2018 y k = 2018 2019 2 673 = 3027 \sum_{k=1}^{2018} y_{k} =\cfrac{\cfrac{2018\cdot2019}{2}}{673}=3027

Hence, returning to our original question, n = 1 2018 1 1 a n = 3027 \sum_{n=1}^{2018} \cfrac{1}{1-a_{n}}=3027

@Vishruth Bharath , just a note that in the question, if you enclose your entire subscript {2018} in these brackets, they will all appear subscript, not just the first digit, whereas the 018 currently is large

Stephen Mellor - 3 years ago

Bravo! Great solution.

Chan Tin Ping - 3 years ago

Log in to reply

@Chan Tin Ping Thanks!

donglin loo - 3 years ago
Nikhil N
May 19, 2018

Let y = x 2018 + x 2017 + . . . . + x 1345 y = x^{2018} + x^{2017} + .... + x - 1345

Thus, y = ( x a 1 ) ( x a 2 ) . . . . . ( x a 2018 ) y = (x-a_{1})(x-a_{2}).....(x-a_{2018}) , where a 1 , a 2 a_{1}, a_{2} and so on are the roots.

l n ( y ) = n = 1 2018 l n ( x a n ) ln(y) = \sum_{n=1}^{2018} ln(x-a_{n})

Differentiating: 1 y d y d x = n = 1 2018 1 x a n \frac{1}{y} \frac{dy}{dx} = \sum_{n=1}^{2018} \frac{1}{x-a_{n}}

Since we require the RHS value for x=1, all that remains to be done is finding y ( 1 ) y(1) and y ( 1 ) y'(1) .

y ( 1 ) = 1 2018 1345 = 673 y(1) = 1*2018 - 1345 = 673

y ( x ) = 2018 x 2017 + 2017 x 2016 + . . . + 1 = > y ( 1 ) = ( 2018 ) ( 2019 ) 2 y'(x) = 2018x^{2017} + 2017x^{2016} + ... + 1 => y'(1) = \frac{(2018)(2019)}{2}

Thus, the desired sum is 3027 3027 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...