Summer of 2019

Calculus Level 3

0 π 2 sin 2019 x d x = a b c ! d ! ! \displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{2019}x \, dx = \frac{a^b c!}{d!!}

Submit your answer as a + b + c + d a+b+c+d .

Notation: ! ! !! denotes the double factorial .


The answer is 4039.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

William Allen
Jul 11, 2019

β ( x , y ) = 0 π 2 sin 2 x 1 t cos 2 y 1 t d t 2 x 1 = 2019 , 2 y 1 = 0 x = 1010 , y = 1 2 \beta(x,y)=\displaystyle\int_{0}^{\frac{\pi}{2}} \sin^{2x-1}t\cos^{2y-1}t \, dt \implies 2x-1=2019, 2y-1=0 \implies x=1010, y=\frac{1}{2}

I = 0 π 2 sin 2019 x d x = β ( 1010 , 1 2 ) 2 = Γ ( 1010 ) Γ ( 1 2 ) 2 Γ ( 2021 2 ) I=\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{2019}x \, dx = \frac{\beta(1010,\frac{1}{2})}{2}=\frac{\Gamma(1010)\cdot\Gamma(\frac{1}{2})}{2\cdot\Gamma(\frac{2021}{2})}

We have Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma(s) so applying this recurrence 1010 1010 times means Γ ( 2021 2 ) = 2019 ! ! 2 1010 Γ ( 1 2 ) \Gamma(\frac{2021}{2})=\frac{2019!!}{2^{1010}}\cdot\Gamma(\frac{1}{2})

I = Γ ( 1010 ) Γ ( 1 2 ) 2019 ! ! 2 1009 Γ ( 1 2 ) = 2 1009 1009 ! 2019 ! ! a + b + c + d = 4039 \implies I=\frac{\Gamma(1010)\cdot\Gamma(\frac{1}{2})}{\frac{2019!!}{2^{1009}}\cdot\Gamma(\frac{1}{2})}=\frac{2^{1009}\cdot 1009!}{2019!!} \implies a+b+c+d=\boxed{4039}

Correction to top line; should read β ( x , y ) = 0 π 2 2 sin 2 x 1 t cos 2 y 1 t d t \beta(x,y)=\displaystyle\int_{0}^{\frac{\pi}{2}} 2\sin^{2x-1}t\cos^{2y-1}t \, dt

William Allen - 1 year, 11 months ago

Following convention, we use the capital letter beta B \text{B} instead of the lowercase beta β \beta for beta function. Just like gamma function is Γ ( ) \Gamma (\cdot) and not γ ( ) \gamma (\cdot) .

From Wikipedia : "The beta function was studied by Euler and Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta rather than the similar Latin capital B or the Greek lowercase β."

Chew-Seong Cheong - 1 year, 11 months ago

Log in to reply

Ah thanks for the info, I'll make sure to use a capital B \Beta next time!

William Allen - 1 year, 10 months ago
Chew-Seong Cheong
Jul 13, 2019

Similar solution with @William Allen 's

I = 0 π 2 sin 2019 x d x = 0 π 2 sin 2019 x cos 0 x d x Beta function B ( m , n ) = 2 0 π 2 sin 2 m 1 x cos 2 n 1 x d x = 1 2 B ( 1010 , 1 2 ) and B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , where Γ ( ) is gamma function. = Γ ( 1010 ) Γ ( 1 2 ) 2 Γ ( 2021 2 ) Note that Γ ( n ) = ( n 1 ) ! , Γ ( 1 2 ) = π = 1009 ! π 2 × 2019 ! ! 2 1010 π and Γ ( 1 + x ) = x Γ ( x ) = 2 1009 1009 ! 2019 ! ! \begin{aligned} I & = \int_0^\frac \pi 2 \sin^{2019} x \ dx \\ & = \int_0^\frac \pi 2 \sin^{2019} x \cos^0 x \ dx & \small \color{#3D99F6} \text{Beta function B}(m,n) = 2 \int_0^\frac \pi 2 \sin^{2m-1} x \cos ^{2n -1} x \ dx \\ & = \frac 12 \text B \left(1010, \frac 12 \right) & \small \color{#3D99F6} \text{and B}(m,n) = \frac {\Gamma (m) \Gamma (n)}{\Gamma(m+n)} \text{, where }\Gamma (\cdot) \text{ is gamma function.} \\ & = \frac {\color{#3D99F6}\Gamma (1010) \Gamma \left(\frac 12 \right)}{2 \color{#D61F06} \Gamma \left(\frac {2021}2 \right)} & \small \color{#3D99F6} \text{Note that } \Gamma (n) = (n-1)!, \Gamma \left(\frac 12 \right) = \sqrt \pi \\ & = \frac {\color{#3D99F6}1009! \sqrt \pi}{2\times \color{#D61F06} \frac {2019!!}{2^{1010}}\sqrt \pi} & \small \color{#3D99F6} \text{and } \Gamma (1+x) = x\Gamma (x) \\ & = \frac {2^{1009}1009!}{2019!!} \end{aligned}

Therefore, a + b + c + d = 2 + 1009 + 1009 + 2019 = 4039 a+b+c+d = 2+1009+1009+2019 = \boxed{4039} .


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...