Summing and subtracting

Algebra Level 2

1 2 + 3 4 + + 999 1000 + 1001 = ? \large1-2+3-4+\cdots+999-1000+1001=\, ?


The answer is 501.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tarmo Taipale
Oct 8, 2016

1 2 + 3 4 + . . . + 999 1000 + 1001 1-2+3-4+...+999-1000+1001

= ( 1 2 ) + ( 3 4 ) + . . . + ( 999 1000 ) + 1001 =(1-2)+(3-4)+...+(999-1000)+1001

= 500 × ( 1 ) + 1001 =500\times(-1)+1001

= 501 =\boxed{501}

well my process was bit lengthy,I solved it using properties of arithmetic progressions. summing negative and positive integers and then adding them.

Ishaan Shanker - 4 years, 8 months ago

Log in to reply

That's another way to solve this problem. :)

Tarmo Taipale - 4 years, 8 months ago
Viki Zeta
Oct 8, 2016

S = 1 2 + 3 4 + + 999 1000 + 1001 S = ( 1 + 3 + 5 + 7 + + 1001 ) ( 2 + 4 + 6 + 8 + + 1000 ) S = S a + S b , where S a and S b are sum to n terms of AP S = 501 2 ( 2 ( 1 ) + ( 501 1 ) ( 2 ) ) 500 2 ( 2 ( 2 ) + ( 500 1 ) 2 ) = 501 2 ( 2 + 1000 ) 500 2 ( 4 + 998 ) = 501 2 ( 2 + 1000 ) 500 2 ( 2 + 1000 ) = ( 2 + 1000 ) ( 501 2 500 2 ) = ( 2 + 1000 ) ( 500 + 1 2 500 2 ) = ( 2 + 1000 ) ( 500 2 + 1 2 500 2 ) = ( 2 + 1000 ) ( 1 2 ) = 1 + 500 = 501 S = 1 - 2 + 3 - 4 + \ldots + 999 - 1000 + 1001 \\ S = \color{#3D99F6}{(1+3+5+7+\ldots + 1001)} - \color{#D61F06}{(2+4+6+8+\ldots+1000)} \\ S = S_a + S_b \text{, where }S_a\text{ and } S_b \text{ are sum to n terms of AP} \\ S = \color{#3D99F6}{\dfrac{501}{2}(2(1) + (501-1)(2))} - \color{#D61F06}{\dfrac{500}{2}(2(2) + (500-1)2)} \\ = \dfrac{501}{2}(2 + 1000) - \dfrac{500}{2}(\color{#D61F06}{4} + 998) \\ = \dfrac{501}{2}(2+1000) - \dfrac{500}{2}(\color{#D61F06}{2} + \color{#3D99F6}{1000}) \\ = \color{#3D99F6}{(2+1000)}\left(\dfrac{\color{#D61F06}{501}}{2} - \dfrac{500}{2}\right) \\ = (2+1000)\left(\dfrac{500 + 1}{2} - \dfrac{500}{2}\right) \\ = (2+1000)\left(\color{#D61F06}{\dfrac{500}{2}} + \dfrac{1}{2} - \color{#D61F06}{\dfrac{500}{2}}\right) \\ = (2+1000)\left(\dfrac{1}{2}\right) \\ = 1 + 500 \\ \boxed{= 501}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...