Summing Extremena

Algebra Level 5

Let f ( x ) = x 2 2 a x a 2 3 / 4 f(x)=x^2-2ax-a^2-3/4 . Let X X be the sum of the largest and smallest a a for which f ( x ) 1 |f(x)| \leq 1 for all x [ 0 , 1 ] x \in [0, 1] . If X X can be expressed as n m p \dfrac{\sqrt{n}-m}{p} , then find m + n + p m+n+p .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 6, 2014

The principles of this question are simple but one has to work to get the solution to this question.

First note that f ( 0 ) = a 2 3 / 4 < 0 , f ( 1 ) = 1 / 4 2 a a 2 f(0)=-{ a }^{ 2 }-3/4<0,f(1)=1/4-2a-{ a }^{ 2 }

We will be dealing with 3 cases.

C a s e 1 a ϵ [ 0 , 1 ] Case-1 \quad a \epsilon [0,1]

Diagram1 Diagram1

Global minimum of f ( x ) = 2 a 2 3 / 4 f(x)=-2{ a }^{ 2 }-3/4 that occurs at x = a x=a

Since f ( x ) 1 1 f ( x ) 1 \left| f(x) \right| \le 1\quad \Rightarrow -1\le f(x)\le 1

So we have 2 a 2 3 / 4 1 1 8 a 1 8 -2{ a }^{ 2 }-3/4\ge -1 \frac { -1 }{ \sqrt { 8 } } \le a\le \frac { 1 }{ \sqrt { 8 } }

Also 1 / 4 2 a a 2 1 a ϵ ( , 3 / 2 ] [ 1 / 2 , ) 1/4-2a-{ a }^{ 2 }\le 1\quad \Rightarrow a\epsilon (-\infty ,-3/2]\cup [-1/2,\infty )

Finally for this case a ϵ [ 0 , 1 8 ] a\epsilon [0 ,\frac { 1 }{ \sqrt { 8 } } ]

C a s e 2 a ϵ ( 1 , ) Case-2 \quad a\epsilon (1,\infty )

Diagram2 Diagram2

By diagram note that f ( 1 ) < f ( 0 ) f(1)<f(0) hence f ( 1 ) f(1) is the minimum value.

So f ( 1 ) 1 f(1)\ge -1 hence 1 / 4 2 a a 2 1 1/4-2a-{ a }^{ 2 }\ge -1

Solving a ϵ [ 5 / 2 , 1 / 2 ] a\epsilon [-5/2,-1/2]

Finally for this case a ϵ ϕ a\epsilon \phi

C a s e 3 a ϵ ( , 0 ] Case-3 \quad a\epsilon (-\infty ,0]

Diagram3 Diagram3

Now f ( 1 ) > f ( 0 ) , f ( 1 ) 1 , f ( 0 ) 1 f(1)>f(0), f(1)\le 1,f(0)\ge -1

a 2 3 / 4 1 \Rightarrow -{ a }^{ 2 }-3/4\ge -1 Solving a ϵ [ 1 2 , 1 2 ] a\epsilon [\frac { -1 }{ 2 } ,\frac { 1 }{ 2 } ]

Also 1 / 4 2 a a 2 1 1/4-2a-{ a }^{ 2 }\le 1

hence a ϵ ( , 3 / 2 ] [ 1 / 2 , ) a\epsilon (-\infty ,-3/2]\cup [-1/2,\infty )

Finally for this case a ϵ [ 1 / 2 , 0 ] a\epsilon [-1/2,0]

So the final range is the intersection of all the values of a a in the 3 3 cases a ϵ [ 1 / 2 , 1 8 ] a\epsilon [-1/2,\frac { 1 }{ \sqrt { 8 } } ]

So a m i n = 1 / 2 { a }_{ min }=-1/2 and a m a x = 1 8 { a }_{ max }=\frac { 1 }{ \sqrt { 8 } }

Hence a m i n + a m a x = 2 2 4 { a }_{ min }+{ a }_{ max }=\frac { \sqrt { 2 } -2 }{ 4 }

Hence n = m = 2 n=m=2 and n = 4 n=4

It should have been specified that 'n' is a square free number

Shishir G. - 6 years, 8 months ago

Nice solution Ronak...... but how did you add image in solution ????please Tell me...!!! Thanks

Karan Shekhawat - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...