Summing the alphabets !

Algebra Level 4

( 1 27 ) 2 log 5 13 2 log 5 9 \displaystyle \sqrt{\left(\frac{1}{\sqrt{27}}\right)^{2-\frac{ \log_{5}{13}}{2 \log_{5}{9}}}} Can be expressed as: 3 a b × 1 3 c d 3^{\frac{a}{b}} \times 13^{\frac{c}{d}} Where a a is a negative integer and b , c , d b,c,d are positive integers with gcd ( a , b ) = gcd ( c , d ) = 1 \gcd(-a,b)=\gcd (c,d)=1 . What is a + b + c + d a+b+c+d ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Reineir Duran
Feb 6, 2016

Inside the radical, we first simplify the exponent of 1 27 \displaystyle \frac{1}{\sqrt{27}} . We have 2 log 5 13 2 log 5 9 2 log 5 13 log 5 81 2 log 81 13 2 1 4 log 3 13 . \displaystyle 2 - \frac{\log_{5}{13}}{2\log_{5}{9}} \Longrightarrow 2 - \frac{\log_{5}{13}}{\log_{5}{81}} \Longrightarrow 2 - \log_{81}{13} \Longrightarrow \color{#D61F06}{2 - \frac{1}{4}\log_{3}{13}}. Then, ( 1 3 3 2 ) 2 1 4 log 3 13 ( 3 3 2 ) 2 1 4 log 3 13 3 3 8 log 3 13 3 3 3 8 log 3 13 log 3 27 \displaystyle \sqrt{\left(\frac{1}{3^{\frac{3}{2}}}\right)^{\color{#D61F06}{2 - \frac{1}{4}\log_{3}{13}}}} \Longrightarrow \sqrt{\left(3^{-\frac{3}{2}}\right)^{\color{#D61F06}{2 - \frac{1}{4}\log_{3}{13}}}} \Longrightarrow \sqrt{3^{\frac{3}{8}\log_{3}{13} - 3}} \Longrightarrow \sqrt{3^{\frac{3}{8}\log_{3}{13} - \log_{3}{27}}} 3 log 3 1 3 3 8 3 3 1 3 3 8 3 3 = 1 3 3 16 × 3 3 2 . \displaystyle \Longrightarrow \sqrt{3^{\log_{3}{\frac{13^{\frac{3}{8}}}{3^3}}}} \Longrightarrow \sqrt{\frac{13^{\frac{3}{8}}}{3^3}} = 13^{\frac{3}{16}} \times 3^{\frac{-3}{2}}. Thus, we get a + b + c + d = 3 + 2 + 3 + 16 = 18 \displaystyle a + b + c + d = -3 + 2 + 3 + 16 = 18 .

Brilliant solution @Reineir Duran

You made it look so simple!

Mehul Arora - 5 years, 4 months ago

Log in to reply

Thank you! :)

Reineir Duran - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...