Summing The Series

Algebra Level 4

4 × 3 × 2 × 1 3 ! + 2 ! + 1 ! \dfrac{4\times{3}\times{2}\times{1}}{3!+2!+1!} + 5 × 4 × 3 × 2 4 ! + 3 ! + 2 ! \dfrac{5\times{4}\times{3}\times{2}}{4!+3!+2!} +.......+ 2015 × 2014 × 2013 × 2012 2014 ! + 2013 ! + 2012 ! \dfrac{2015\times{2014}\times{2013}\times{2012}}{2014!+2013!+2012!} = a a

Find a \lfloor{a}\rfloor

. . . \lfloor...\rfloor is the greatest integer less than equal to [ . . . ... ]


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Dec 27, 2014

I will present you a manipulation mania.

S = r = 1 2012 ( r + 3 ) ( r + 2 ) ( r + 1 ) r r ! + ( r + 1 ) ! + ( r + 2 ) ! S=\displaystyle \sum _{ r=1 }^{ 2012 }{ \frac { (r+3)(r+2)(r+1)r }{ r!+(r+1)!+(r+2)! } }

S = r = 1 2012 ( r + 3 ) ( r + 2 ) ( r + 1 ) r ( r + 2 ) 2 r ! S=\displaystyle \sum _{ r=1 }^{ 2012 }{ \frac { (r+3)(r+2)(r+1)r }{ { (r+2) }^{ 2 }r! } }

S = r = 1 2012 ( r + 3 ) ( r + 1 ) 2 r ( r + 2 ) ! S=\displaystyle \sum _{ r=1 }^{ 2012 }{ \frac { (r+3){ (r+1) }^{ 2 }r }{ (r+2)! } }

S = r = 1 2012 1 ( r 2 ) ! + 3 ( r 1 ) ! 1 r ! + 2 ( r + 1 ) ! 2 ( r + 2 ) ! S=\displaystyle \sum _{ r=1 }^{ 2012 }{ \frac { 1 }{ (r-2)! } +\frac { 3 }{ (r-1)! } -\frac { 1 }{ r! } +\frac { 2 }{ (r+1)! } -\frac { 2 }{ (r+2)! } }

S = r = 1 2012 1 ( r 2 ) ! + r = 1 2012 2 ( r 1 ) ! + r = 1 2012 ( 1 ( r 1 ) ! 1 r ! ) + r = 1 2012 ( 2 ( r + 1 ) ! 2 ( r + 2 ) ! ) S=\displaystyle \sum _{ r=1 }^{ 2012 }{ \frac { 1 }{ (r-2)! } +\sum _{ r=1 }^{ 2012 }{ \frac { 2 }{ (r-1)! } } + } \sum _{ r=1 }^{ 2012 }{ (\frac { 1 }{ (r-1)! } -\frac { 1 }{ r! } ) } +\sum _{ r=1 }^{ 2012 }{ (\frac { 2 }{ (r+1)! } -\frac { 2 }{ (r+2)! } ) }

The last two summations are telescoping series and can be solved easily, and for the first two summations using the definition of euler's constant we can write :

S = r = 1 2010 3 r ! + 2 2011 ! + ( 1 1 2012 ! ) + 2 ( 1 2 ! 1 2014 ! ) S=\displaystyle \sum _{ r=1 }^{ 2010 }{ \frac { 3 }{ r! } +\frac { 2 }{ 2011! } + } (1-\frac { 1 }{ 2012! } )+2(\frac { 1 }{ 2! } -\frac { 1 }{ 2014! } )

Now r = 1 2010 3 r ! 3 e \displaystyle \sum _{ r=1 }^{ 2010 }{ \frac { 3 }{ r! } } \approx 3e

Using this we get :

S = ( 3 e + 2 ) + ( 2 2011 ! 1 2012 ! 2 2014 ! ) S=(3e+2)+(\frac { 2 }{ 2011! } -\frac { 1 }{ 2012! } -\frac { 2 }{ 2014! } )

Apart from 3 e + 2 3e+2 all the other terms are just small and can be neglected.

S 3 e + 2 = 10.15 S \approx 3e+2=10.15

Hence S = 10 \left\lfloor S \right\rfloor =10

How did you get to step four... What could have possibly made you think of that?

Trevor Arashiro - 6 years, 5 months ago

Log in to reply

did partial fraction for the step.

Trishit Chandra - 6 years, 3 months ago

Excellent!! Awesome!! Mind blowing!! Hats off to you!!

Parth Lohomi - 6 years, 5 months ago

done the same process.

Trishit Chandra - 6 years, 3 months ago

S = 10.1548 more accurately sir Did exactly the same way sir

Shashank Rustagi - 5 years, 12 months ago

Log in to reply

We have to find the gif of a not the actual value.

D K - 2 years, 10 months ago

Did exactly same.Good solution.

D K - 2 years, 10 months ago

Did it exactly the same way. Nice solution dude :)

Aditya Tiwari - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...