Summing the sum

Calculus Level 5

a = 1 b = 1 1 a 2 ( a + b ) 4 = A B ζ ( C ) + ( ζ ( D ) ) E \large \sum _{ a=1 }^{ \infty }{ \sum _{ b=1 }^{ \infty }{ \dfrac { 1 }{ { a }^{ 2 }{ ( a+b ) }^{ 4 } } } } =-\dfrac { A }{ B } \zeta \left( C \right) +( { \zeta }( D ))^E

The equation above holds true for positive integers A , B , C , D A,B,C,D and E E , where A A and B B are coprime. Find A + B + C + D + E A+B+C+D+E .

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


Inspiration .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 3, 2016

The sum is n = 1 H n ( 2 ) ( n + 1 ) 4 = n = 1 ( H n + 1 ( 2 ) ( n + 1 ) 4 1 ( n + 1 ) 6 ) = n = 2 ( H n ( 2 ) n 4 1 n 6 ) = n = 1 ( H n ( 2 ) n 4 1 n 6 ) = ζ ( 3 ) 2 1 3 ζ ( 6 ) ζ ( 6 ) = 4 3 ζ ( 6 ) + ζ ( 3 ) 2 \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^4} & = & \displaystyle \sum_{n=1}^\infty \left( \frac{H^{(2)}_{n+1}}{(n+1)^4} - \frac{1}{(n+1)^6}\right) \\ & = & \displaystyle \sum_{n=2}^\infty\left(\frac{H^{(2)}_n}{n^4} - \frac{1}{n^6}\right) \; = \; \sum_{n=1}^\infty\left(\frac{H^{(2)}_n}{n^4} - \frac{1}{n^6}\right) \\ & = & \displaystyle \zeta(3)^2 - \tfrac13\zeta(6) - \zeta(6) \; = \; -\tfrac43\zeta(6) + \zeta(3)^2 \end{array} making the answer 4 + 3 + 6 + 2 + 3 = 18 4 + 3 + 6 + 2 + 3 = \boxed{18} .

Typo in last line sir, it should be 18.

Nice solution(though if elaborate first step, it would be easier to catch.).

Harsh Shrivastava - 5 years, 3 months ago

Tell me how you convert into this form. Your very first step?

Ciara Sean - 5 years, 3 months ago

Log in to reply

a = 1 b = 1 1 a 2 ( a + b ) 4 = a = 1 b = a + 1 1 a 2 b 4 = b = 2 a = 1 b 1 1 a 2 b 4 = b = 2 H b 1 ( 2 ) b 4 = b = 1 H b ( 2 ) ( b + 1 ) 4 \sum_{a=1}^\infty \sum_{b=1}^\infty \frac{1}{a^2(a+b)^4} \; =\; \sum_{a=1}^\infty \sum_{b=a+1}^\infty \frac{1}{a^2b^4} \; = \; \sum_{b=2}^\infty \sum_{a=1}^{b-1} \frac{1}{a^2b^4} \; = \; \sum_{b=2}^\infty \frac{H^{(2)}_{b-1}}{b^4} \; = \; \sum_{b=1}^\infty \frac{H^{(2)}_b}{(b+1)^4}

Mark Hennings - 5 years, 3 months ago

Log in to reply

thanks .....

Ciara Sean - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...