n = 2 ∑ ∞ ( n 2 − 1 ) ( n 2 ) ( n 2 + 1 ) 1
If the above expression has a closed form b a π coth ( π ) − d π c + f e , where a , b , c , d , e and f are positive integers with g cd ( a , b ) = g cd ( e , f ) = 1 , find a + b + c + d + e + f .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Mark Hennings - Do you know where I can find a proof of the "standard identity" you used? Thank you
Log in to reply
You need a complex analysis result for an expansion of the cotangent function cot z , using the fact that it is periodic of period π and has simple poles of residue 1 at each integer. One treatment is given here .
Once you have that, put z = i .
Log in to reply
@Mark Hennings - Nice source, thank you
n = 2 ∑ ∞ ( n 2 − 1 ) n 2 ( n 2 + 1 ) 1 = 2 1 ∗ n = 2 ∑ ∞ ( n 2 − 1 ) n 2 ( n 2 + 1 ) ( n 2 + 1 ) − ( n 2 − 1 ) = 2 1 ∗ n = 2 ∑ ∞ { ( n 2 − 1 ) n 2 1 − n 2 ( n 2 + 1 ) 1 } = 2 1 ∗ n = 2 ∑ ∞ { ( n 2 − 1 ) n 2 n 2 − ( n 2 − 1 ) − n 2 ( n 2 + 1 ) ( n 2 + 1 ) − n 2 } = 2 1 ∗ n = 2 ∑ ∞ { n − 1 1 − n + 1 1 − n 2 1 − n 2 1 + n 2 + 1 1 } = 2 1 ∗ n = 2 ∑ ∞ { n − 1 1 − n + 1 1 − n 2 1 − n 2 1 + n 2 + 1 1 } = 2 1 ∗ n = 2 ∑ 3 n − 1 1 + 2 1 ∗ n = 4 ∑ ∞ n − 1 1 − n = 2 ∑ ∞ { 2 1 ∗ n + 1 1 + n 2 1 − 2 ( n 2 + 1 ) 1 } = 2 1 ∗ n = 2 ∑ 3 n − 1 1 + 2 1 ∗ n = 2 ∑ ∞ { n + 1 1 − n + 1 1 } − n = 2 ∑ ∞ { n 2 1 − 2 ( n 2 + 1 ) 1 } . . . . . . . B u t s e r i e s i s c o n v e r g i n g . = 2 1 ∗ n = 2 ∑ 3 n − 1 1 − n = 2 ∑ ∞ { n 2 1 − 2 ( n 2 + 1 ) 1 } W e h a v e n = 2 ∑ ∞ { n 2 1 − 2 ( n 2 + 1 ) 1 } = n = 1 ∑ ∞ { n 2 1 − 2 ( n 2 + 1 ) 1 } − n = 1 ∑ 1 { n 2 1 − 2 ( n 2 + 1 ) 1 } = { 6 π 2 − 4 1 ∗ π coth π } − { 1 − 2 1 } ∴ n = 2 ∑ ∞ ( n 2 − 1 ) n 2 ( n 2 + 1 ) 1 = 2 1 ∗ n = 2 ∑ 3 n − 1 1 − n = 2 ∑ ∞ { n 2 1 − 2 ( n 2 + 1 ) 1 } = 8 3 − { 6 π 2 − 4 1 ∗ π coth π − 2 1 } = 8 7 − 6 π 2 + 4 1 ∗ π coth π . = b a − d π c + f e ∗ π coth π S o a + b + c + d + e + f = 1 + 4 + 2 + 6 + 7 + 8 = 2 8 .
Problem Loading...
Note Loading...
Set Loading...
We have S = n = 2 ∑ ∞ ( n 2 − 1 ) n 2 ( n 2 + 1 ) 1 = n − 2 ∑ ∞ n 2 − 1 1 ( n 2 1 − n 2 + 1 1 ) = n = 2 ∑ ∞ [ n 2 − 1 1 − n 2 1 − 2 1 ( n 2 − 1 1 − n 2 + 1 1 ) ] = 2 1 n = 2 ∑ ∞ n 2 − 1 1 − n = 2 ∑ ∞ n 2 1 + 2 1 n = 2 ∑ ∞ n 2 + 1 1 = 4 1 n = 2 ∑ ∞ ( n − 1 1 − n + 1 1 ) − ( ζ ( 2 ) − 1 ) + 2 1 n = 2 ∑ ∞ n 2 + 1 1 = 4 1 ( 1 + 2 1 ) − ( 6 1 π 2 − 1 ) + 2 1 n = 2 ∑ ∞ n 2 + 1 1 = 8 9 − 6 1 π 2 + 2 1 n = 1 ∑ ∞ n 2 + 1 1 Using the standard identity n = 1 ∑ ∞ n 2 + 1 1 = 2 1 ( π coth π − 1 ) we deduce that S = 8 7 − 6 1 π 2 + 4 1 π coth π making the answer 1 + 4 + 2 + 6 + 7 + 8 = 2 8 .