Summing to a small value

Algebra Level 5

n = 2 1 ( n 2 1 ) ( n 2 ) ( n 2 + 1 ) \large \displaystyle \sum_{n=2}^{\infty} \dfrac{1}{(n^2-1)(n^2)(n^2+1)}

If the above expression has a closed form a π b coth ( π ) π c d + e f \dfrac{a \pi}{b} \coth (\pi) - \dfrac{\pi^c}{d} + \dfrac{e}{f} , where a a , b b , c c , d d , e e and f f are positive integers with gcd ( a , b ) = gcd ( e , f ) = 1 \gcd(a,b) = \gcd(e,f) = 1 , find a + b + c + d + e + f a+b+c+d+e+f .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 8, 2017

We have S = n = 2 1 ( n 2 1 ) n 2 ( n 2 + 1 ) = n 2 1 n 2 1 ( 1 n 2 1 n 2 + 1 ) = n = 2 [ 1 n 2 1 1 n 2 1 2 ( 1 n 2 1 1 n 2 + 1 ) ] = 1 2 n = 2 1 n 2 1 n = 2 1 n 2 + 1 2 n = 2 1 n 2 + 1 = 1 4 n = 2 ( 1 n 1 1 n + 1 ) ( ζ ( 2 ) 1 ) + 1 2 n = 2 1 n 2 + 1 = 1 4 ( 1 + 1 2 ) ( 1 6 π 2 1 ) + 1 2 n = 2 1 n 2 + 1 = 9 8 1 6 π 2 + 1 2 n = 1 1 n 2 + 1 \begin{aligned} S & = \; \sum_{n=2}^\infty \frac{1}{(n^2-1)n^2(n^2+1)} \; = \; \sum_{n-2}^\infty \frac{1}{n^2-1}\left(\frac{1}{n^2} - \frac{1}{n^2+1}\right) \\ & = \; \sum_{n=2}^\infty \left[ \frac{1}{n^2-1} - \frac{1}{n^2} - \tfrac12\left(\frac{1}{n^2-1} - \frac{1}{n^2+1}\right)\right] \\ & = \; \tfrac12\sum_{n=2}^\infty \frac{1}{n^2-1} - \sum_{n=2}^\infty \frac{1}{n^2} + \tfrac12\sum_{n=2}^\infty \frac{1}{n^2+1} \\ & = \; \tfrac14\sum_{n=2}^\infty\left(\frac{1}{n-1} - \frac{1}{n+1}\right) - \big(\zeta(2) - 1\big) + \tfrac12\sum_{n=2}^\infty \frac{1}{n^2+1} \\ & = \; \tfrac14\big(1 + \tfrac12\big) - \big(\tfrac16\pi^2 - 1\big) + \tfrac12\sum_{n=2}^\infty \frac{1}{n^2+1} \\ & = \; \tfrac{9}{8} -\tfrac16\pi^2 + \tfrac12\sum_{n=1}^\infty \frac{1}{n^2+1} \end{aligned} Using the standard identity n = 1 1 n 2 + 1 = 1 2 ( π coth π 1 ) \sum_{n=1}^\infty \frac{1}{n^2+1} \; = \; \tfrac12\big(\pi\coth\pi - 1\big) we deduce that S = 7 8 1 6 π 2 + 1 4 π coth π S \; = \; \tfrac78 -\tfrac16\pi^2 + \tfrac14\pi\coth\pi making the answer 1 + 4 + 2 + 6 + 7 + 8 = 28 1 + 4 + 2 + 6 + 7 + 8 = \boxed{28} .

@Mark Hennings - Do you know where I can find a proof of the "standard identity" you used? Thank you

Christopher Criscitiello - 3 years, 8 months ago

Log in to reply

You need a complex analysis result for an expansion of the cotangent function cot z \cot z , using the fact that it is periodic of period π \pi and has simple poles of residue 1 1 at each integer. One treatment is given here .

Once you have that, put z = i z=i .

Mark Hennings - 3 years, 8 months ago

Log in to reply

@Mark Hennings - Nice source, thank you

Christopher Criscitiello - 3 years, 8 months ago

n = 2 1 ( n 2 1 ) n 2 ( n 2 + 1 ) = 1 2 n = 2 ( n 2 + 1 ) ( n 2 1 ) ( n 2 1 ) n 2 ( n 2 + 1 ) = 1 2 n = 2 { 1 ( n 2 1 ) n 2 1 n 2 ( n 2 + 1 ) } = 1 2 n = 2 { n 2 ( n 2 1 ) ( n 2 1 ) n 2 ( n 2 + 1 ) n 2 n 2 ( n 2 + 1 ) } = 1 2 n = 2 { 1 n 1 1 n + 1 1 n 2 1 n 2 + 1 n 2 + 1 } = 1 2 n = 2 { 1 n 1 1 n + 1 1 n 2 1 n 2 + 1 n 2 + 1 } = 1 2 n = 2 3 1 n 1 + 1 2 n = 4 1 n 1 n = 2 { 1 2 1 n + 1 + 1 n 2 1 2 ( n 2 + 1 ) } = 1 2 n = 2 3 1 n 1 + 1 2 n = 2 { 1 n + 1 1 n + 1 } n = 2 { 1 n 2 1 2 ( n 2 + 1 ) } . . . . . . . B u t s e r i e s i s c o n v e r g i n g . = 1 2 n = 2 3 1 n 1 n = 2 { 1 n 2 1 2 ( n 2 + 1 ) } \begin{aligned} &~~~~~~~~~~~ \sum_{n=2}^\infty \dfrac1 {(n^2-1)n^2(n^2+1)} \\ &=\frac 1 2 *\sum_{n=2}^\infty \dfrac{(n^2+1)-(n^2-1)} {(n^2-1)n^2(n^2+1)} \\ &= \frac 1 2 *\sum_{n=2}^\infty \Big \{ \dfrac 1 {(n^2-1)n^2}- \dfrac 1 {n^2(n^2+1)} \Big \} \\ &=\frac 1 2 *\sum_{n=2}^\infty\Big \{ \dfrac {n^2-(n^2-1)} {(n^2-1)n^2}- \dfrac {(n^2+1)-n^2} {n^2(n^2+1)} \Big \} \\ &=\frac 1 2 *\sum_{n=2}^\infty\Big \{ \dfrac 1{ n-1}- \dfrac 1{ n+1}-\frac 1{ n^2} -\frac 1 { n^2}+ \dfrac 1 {n^2+1} \Big \} \\ &=\frac 1 2 *\sum_{n=2}^\infty\Big \{ \dfrac 1{ n-1}- \dfrac 1{ n+1}-\frac 1{ n^2} -\frac 1 { n^2}+ \dfrac 1 {n^2+1} \Big \} \\ &=\frac 1 2 *\sum_{n=2}^3 \dfrac 1{ n-1}+\frac 1 2 *\sum_{n=4}^\infty \dfrac 1{ n-1}-\sum_{n=2}^\infty\Big \{\frac 1 2* \dfrac 1 { n+1}+\frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} \\ &=\frac 1 2 *\sum_{n=2}^3 \dfrac 1{ n-1}+{\color{#3D99F6}{\ \frac 1 2 *\sum_{n=2}^\infty\Big \{ \dfrac 1{ n+1}- \dfrac 1{ n+1}\Big \}}} - \sum_{n=2}^\infty\Big \{ \frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} .......But~series~is ~converging.\\ &=\frac 1 2 *\sum_{n=2}^3 \dfrac 1{ n-1}-\sum_{n=2}^\infty\Big \{ \frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} \end{aligned} \\ W e h a v e n = 2 { 1 n 2 1 2 ( n 2 + 1 ) } = n = 1 { 1 n 2 1 2 ( n 2 + 1 ) } n = 1 1 { 1 n 2 1 2 ( n 2 + 1 ) } = { π 2 6 1 4 π coth π } { 1 1 2 } n = 2 1 ( n 2 1 ) n 2 ( n 2 + 1 ) = 1 2 n = 2 3 1 n 1 n = 2 { 1 n 2 1 2 ( n 2 + 1 ) } = 3 8 { π 2 6 1 4 π coth π 1 2 } = 7 8 π 2 6 + 1 4 π coth π . = a b π c d + e f π coth π S o a + b + c + d + e + f = 1 + 4 + 2 + 6 + 7 + 8 = 28. \displaystyle We~ have~\sum_{n=2}^\infty\Big \{ \frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} \\ =\displaystyle \sum_{n=1}^\infty\Big \{ \frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} -\sum_{n=1}^1\Big \{ \frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} \\ =\displaystyle \Big \{ \dfrac {\pi^2} 6 - \tfrac 1 4*\pi\coth\pi \Big \} - \Big \{1 - \tfrac 1 2 \Big \}\\ \displaystyle \therefore~ ~~~~~~~~~~~ \sum_{n=2}^\infty \dfrac1 {(n^2-1)n^2(n^2+1)} \\ \displaystyle =\frac 1 2 *\sum_{n=2}^3 \dfrac 1{ n-1}-\sum_{n=2}^\infty\Big \{ \frac 1{ n^2} - \dfrac 1 {2(n^2+1)} \Big \} \\ \displaystyle =\frac 3 8 - \Big \{ \dfrac {\pi^2} 6 - \frac 1 4*\pi\coth\pi - \frac 1 2 \Big \} \\ \displaystyle =\frac 7 8 - \dfrac {\pi^2} 6 + \frac 1 4*\pi\coth\pi. \\ \displaystyle =\frac a b - \dfrac {\pi^c} d + \frac e f*\pi\coth\pi \\ \displaystyle So~~a+b+c+d+e+f=1+4+2+6+7+8= \Large \color{#D61F06}{28}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...