If n = 1 9 8 3 ! then compute the sum lo g 2 n 1 + lo g 3 n 1 + lo g 4 n 1 + … + lo g 1 9 8 3 n 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Datu Oen could you tell me what is the name of the subject that you use on this kind of sum? thanks.
Log in to reply
Logarithms and it's applications. You also need to learn indices & exponents to understand them.
how log2+log3+.............+log1983=log1983! explain please
Log in to reply
l o g ( 2 ) + l o g ( 3 ) + . . . . + l o g ( 1 9 8 3 ) can be written as:
l o g ( 2 × 3 × . . . . × 1 9 8 3 ) (since l o g a ( b ) + l o g a ( c ) = l o g a ( b c ) - Law of Logarithm)
1 9 8 3 ! = 1 × 2 × 3 × . . . . × 1 9 8 3 = 2 × 3 × . . . . × 1 9 8 3
So, l o g ( 2 × 3 × . . . . × 1 9 8 3 ) = l o g ( 1 9 8 3 ! )
Therefore, l o g ( 2 ) + l o g ( 3 ) + . . . . + l o g ( 1 9 8 3 ) = l o g ( 1 9 8 3 ! )
What about this !!!!!!!!!!!!!!!
The problem statement is wrong. There are 2 logs with base 3.
Problem Loading...
Note Loading...
Set Loading...
Note that lo g a b = lo g a lo g b
Then
lo g 2 n 1 = lo g n lo g 2 ,
lo g 3 n 1 = lo g n lo g 3 ... lo g 1 9 8 3 n 1 = lo g n lo g 1 9 8 3
lo g 2 n 1 + lo g 3 n 1 + . . . + lo g 1 9 8 3 n 1 = lo g n lo g 2 + lo g n lo g 3 + lo g n lo g 1 9 8 3
lo g n lo g 2 + lo g n lo g 3 + lo g n lo g 1 9 8 3 = lo g n lo g 2 + lo g 3 + . . . + l o g 1 9 8 3 = lo g n lo g 1 9 8 3 !
Since n = 1 9 8 3 ! , then lo g n lo g 1 9 8 3 ! = 1