Summing Up

Algebra Level 1

Evaluate

1 + 1 2 + 1 4 + 1 8 + 1 16 + \large 1 + \dfrac{1}{2}+\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + \dots


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Akshat Sharda
Oct 7, 2015

x = 1 + 1 2 + 1 2 2 + 1 2 3 + 1 2 4 + x = 1 + 1 2 ( 1 + 1 2 + 1 2 2 + ) x = 1 + 1 2 x 2 x = 2 + x x = 2 x=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\ldots \infty \\ x=1+\frac{1}{2} \left(1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots \infty \right) \\ x=1+\frac{1}{2}x \Rightarrow 2x=2+x \Rightarrow \boxed{x=2}

Excellent!

Swapnil Das - 5 years, 8 months ago

Let n = 1 + 1/2 + 1/4 + 1/8 + 1/16 + . . . So 2n = 2 + 1 + 1/2 + 1/4 + 1/8 + . . . Therefore 2n = 2 + n. It follows that n = 2.

Muhammad Maulana
Oct 9, 2015

S~= a/1-r = 1/(1-0.5) = 2

Alok Jindal
Nov 8, 2015

Its a case of infinite G.P. so simply apply formula a/(1-r) Where a = 1 & r= 1/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...