Summing Up

Geometry Level 4

k = 1 13 1 sin ( π 4 + ( k 1 ) π 6 ) sin ( π 4 + k π 6 ) = ? \large \sum_{k=1}^{13}\frac{1}{\sin\left(\frac{\pi}{4}+\frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4}+\frac{k\pi}{6}\right)}=\;? Given the answer in 3 decimal places.


The answer is 1.464.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
May 1, 2017

k = 1 13 1 sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = k = 1 13 csc π 6 sin π 6 sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = csc π 6 k = 1 13 sin [ ( π 4 + π k 6 ) ( π 4 + π 6 ( k 1 ) ) ] sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = 2 k = 1 13 sin ( π 4 + π k 6 ) cos ( π 4 + π 6 ( k 1 ) ) cos ( π 4 + π k 6 ) sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = 2 k = 1 13 cot ( π 4 + π 6 ( k 1 ) ) cot ( π 4 + π k 6 ) = 2 [ cot π 4 cot ( π 4 + 13 π 6 ) ] = 2 [ 1 cot 5 π 12 ] = 2 [ 1 ( 2 3 ) ] = 2 ( 3 1 ) = 1.464 \begin{aligned} & \displaystyle \sum_{k=1}^{13} \dfrac{1}{\sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \sum_{k=1}^{13} \csc \dfrac{\pi}{6} \cdot \dfrac{\sin \dfrac{\pi}{6}}{\sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \displaystyle \csc \dfrac{\pi}{6} \cdot \sum_{k=1}^{13} \dfrac{\sin \left[ \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) - \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \right] }{ \sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \displaystyle 2 \cdot \sum_{k=1}^{13} \dfrac{ \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) \cos \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) - \cos \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) }{ \sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \displaystyle 2 \cdot \sum_{k=1}^{13} \cot \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) - \cot \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) \\ \\ &= 2 \left[ \cot \dfrac{\pi}{4} - \cot \left( \dfrac{\pi}{4} + \dfrac{13 \pi}{6} \right) \right] \\ \\ &= 2 \left[ 1 - \cot \dfrac{5 \pi}{12} \right] \\ \\ &= 2 \left[ 1 - (2 - \sqrt{3}) \right] \\ \\ &= 2 ( \sqrt{3} - 1 ) \\ \\ &= \boxed{1.464} \end{aligned}

Very nice solution(+1). Did the same way

Rahil Sehgal - 4 years, 1 month ago

Log in to reply

Awesome. Thank you. :)

Tapas Mazumdar - 4 years, 1 month ago

@Tapas Mazumdar very nice solution and i like the way you start with the problem. :)

Naren Bhandari - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...