n = 1 ∑ ∞ ( n + 1 ) ! n 4 = ?
Find the value of the closed form of the above series to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = n = 1 ∑ ∞ ( n + 1 ) ! n 4 = n = 1 ∑ ∞ n ! ( n − 1 ) 4 = n = 1 ∑ ∞ n ! n 4 − 4 n 3 + 6 n 2 − 4 n + 1 = n = 1 ∑ ∞ n ! n 4 − 4 n = 1 ∑ ∞ n ! n 3 + 6 n = 1 ∑ ∞ n ! n 2 − 4 n = 1 ∑ ∞ n ! n + n = 1 ∑ ∞ n ! 1 = 1 5 e − 4 ( 5 e ) + 6 ( 2 e ) − 4 e + e − 1 = 4 e − 1 ≈ 9 . 8 7 3 See note.
Note:
n = 1 ∑ ∞ n ! 1 n = 1 ∑ ∞ n ! n n = 1 ∑ ∞ n ! n 2 n = 1 ∑ ∞ n ! n 3 n = 1 ∑ ∞ n ! n 4 = n = 0 ∑ ∞ n ! 1 − 1 = e − 1 = n = 1 ∑ ∞ ( n − 1 ) ! 1 = n = 0 ∑ ∞ n ! 1 = e = n = 1 ∑ ∞ ( n − 1 ) ! n = n = 0 ∑ ∞ n ! n + 1 = n = 0 ∑ ∞ n ! n + n = 0 ∑ ∞ n ! 1 = n = 1 ∑ ∞ n ! n + e = 2 e = n = 1 ∑ ∞ ( n − 1 ) ! n 2 = n = 0 ∑ ∞ n ! ( n + 1 ) 2 = n = 0 ∑ ∞ n ! n 2 + 2 n + 1 = 2 e + 2 e + e = 5 e = n = 1 ∑ ∞ ( n − 1 ) ! n 3 = n = 0 ∑ ∞ n ! ( n + 1 ) 3 = n = 0 ∑ ∞ n ! n 3 + 3 n 2 + 3 n + 1 = 5 e + 6 e + 3 e + e = 1 5 e
Sir, This conclusions are nice and i also had drawn out. :)
I have found a general formula: ∑ n = 1 ∞ n ! n m = B m ⋅ e where, B m is the m-th Bell Number.
Log in to reply
Yes, I discovered it after solving another problem.
S = n = 1 ∑ ∞ ( n + 1 ) ! n 4
= n = 1 ∑ ∞ [ ( n + 1 ) ! ( n 2 + 1 ) ( n 2 − 1 ) + ( n + 1 ) ! 1 ] = n = 1 ∑ ∞ [ n ! ( n 2 + 1 ) ( n − 1 ) + ( n + 1 ) ! 1 ] = n = 1 ∑ ∞ [ n ! n 3 − n 2 + n − 1 + ( n + 1 ) ! 1 ]
= n = 1 ∑ ∞ [ n ! ( n 3 − n 2 ) + ( n − 1 ) ! 1 − n ! 1 + ( n + 1 ) ! 1 ]
= n = 1 ∑ ∞ [ ( n − 1 ) ! n ( n − 1 ) + ( n − 1 ) ! 1 − n ! 1 + ( n + 1 ) ! 1 ]
= n = 1 ∑ ∞ [ ( n − 2 ) ! n + ( n − 1 ) ! 1 − n ! 1 + ( n + 1 ) ! 1 ]
= n = 1 ∑ ∞ [ ( n − 3 ) ! 1 + ( n − 2 ) ! 2 + ( n − 1 ) ! 1 − n ! 1 + ( n + 1 ) ! 1 ]
= e + 2 e + 1 + ( e − 2 ) = 4 e − 1 = 9 . 8 7 3
Problem Loading...
Note Loading...
Set Loading...
S = n = 1 ∑ ∞ ( n + 1 ) ! n 4 = n = 1 ∑ ∞ ( n + 1 ) ! n 4 − n 2 + n 2 − 1 + 1 = n = 1 ∑ ∞ ( n + 1 ) ! n 2 ( n + 1 ) ( n − 1 ) + n = 1 ∑ ∞ ( n + 1 ) ! ( n + 1 ) ( n − 1 ) + n = 1 ∑ ∞ ( n + 1 ) ! 1 = n = 1 ∑ ∞ ( n − 1 ) ! n ( n − 1 ) + n = 1 ∑ ∞ n ! n − 1 + e − 2 = n = 2 ∑ ∞ ( n − 1 ) ! n ( n − 1 ) + n = 1 ∑ ∞ [ ( n − 1 ) ! 1 − n ! 1 ] + e − 2 = n = 2 ∑ ∞ [ ( n − 2 ) ! n ] + 1 + e − 2 c c c c c c c c c c c c c c c c c c c c c by Telescoping series sum = n = 2 ∑ ∞ [ ( n − 2 ) ! n − 2 + 2 ] + e − 1 = n = 2 ∑ ∞ ( n − 2 ) ! n − 2 + n = 2 ∑ ∞ ( n − 2 ) ! 2 + e − 1 = n = 3 ∑ ∞ ( n − 2 ) ! n − 2 + 2 e + e − 1 = n = 3 ∑ ∞ ( n − 3 ) ! 1 + 3 e − 1 = 4 e − 1 ≈ 9 . 8 7 3