Summing up factorials (3)

Calculus Level 5

k = 0 i = 0 ( 1 ) i + k ( 2 k + 1 ) ! ( 2 i ) ! ( i + k + 1 ) = sin b ( a ) \sum_{ k=0 }^{ \infty }\sum_{ i=0 }^{ \infty } \dfrac{ { (-1) }^{ i+k } }{ \left( 2k+1 \right)!(2i)!(i+k+1) } = \sin^b(a) If the above equation is true for natural numbers a a and b b . The find the value of a + b a+b .

Note: Angles are measured in radian.


Try part 1 and part 2 as well.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Feb 1, 2017

Multiply sin ( x ) = k = 0 ( 1 ) k ( 2 k + 1 ) ! x 2 k + 1 , cos ( x ) = i = 0 ( 1 ) i ( 2 i ) ! x 2 i \sin(x) = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!}x^{2k+1}, \qquad \cos(x) = \sum_{i=0}^\infty \frac{(-1)^i}{(2i)!}x^{2i} to find sin ( x ) cos ( x ) = k = 0 i = 0 ( 1 ) i + k ( 2 k + 1 ) ! ( 2 i ) ! x 2 i + 2 k + 1 . \sin(x)\cos(x) = \sum_{k=0}^\infty\sum_{i=0}^\infty \frac{(-1)^{i+k}}{(2k+1)!(2i)!}x^{2i+2k+1}.

Now, integrate both sides from x = 0 x=0 to x = 1 x=1 : 0 1 sin ( x ) cos ( x ) d x = 0 1 ( k = 0 i = 0 ( 1 ) i + k ( 2 k + 1 ) ! ( 2 i ) ! x 2 i + 2 k + 1 ) d x = k = 0 i = 0 ( 1 ) i + k ( 2 k + 1 ) ! ( 2 i ) ! 0 1 x 2 i + 2 k + 1 d x \int_0^1 \sin(x)\cos(x)\,dx = \int_0^1 \left(\sum_{k=0}^\infty\sum_{i=0}^\infty \frac{(-1)^{i+k}}{(2k+1)!(2i)!}x^{2i+2k+1}\right)\,dx = \sum_{k=0}^\infty\sum_{i=0}^\infty \frac{(-1)^{i+k}}{(2k+1)!(2i)!}\int_0^1 x^{2i+2k+1}\,dx 1 2 sin 2 ( 1 ) = k = 0 i = 0 ( 1 ) i + k ( 2 k + 1 ) ! ( 2 i ) ! ( 2 i + 2 k + 2 ) \frac{1}{2}\sin^2(1) = \sum_{k=0}^\infty\sum_{i=0}^\infty \frac{(-1)^{i+k}}{(2k+1)!(2i)!(2i+2k+2)}

Finally, just multiply both sides by 2 2 : sin 2 ( 1 ) = k = 0 i = 0 ( 1 ) i + k ( 2 k + 1 ) ! ( 2 i ) ! ( i + k + 1 ) \sin^2(1) = \sum_{k=0}^\infty\sum_{i=0}^\infty \frac{(-1)^{i+k}}{(2k+1)!(2i)!(i+k+1)}

Therefore, a = 1 , b = 2 a=1, b=2 , so a + b = 3 \boxed{a+b=3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...