r = 0 ∑ ∞ ( 2 r + 1 ) ! ( r ! ) 2 = b b a π
If the above equation is true for positive coprime square-free integers a and b . Find the value of a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Notice that r ! = ∫ 0 ∞ t r e − t d t = ( t = x 2 ) ∫ 0 ∞ 2 x 2 r + 1 e − x 2 d x . Using this, r = 0 ∑ ∞ ( 2 r + 1 ) ! r ! 2 = r = 0 ∑ ∞ ( 2 r + 1 ) ! 1 ( ∫ 0 ∞ 2 x 2 r + 1 e − x 2 d x ) ( ∫ 0 ∞ 2 y 2 r + 1 e − y 2 d y ) = 4 ∫ 0 ∞ ∫ 0 ∞ r = 0 ∑ ∞ ( 2 r + 1 ) ! ( x y ) 2 r + 1 e − x 2 − y 2 d x d y = 4 ∫ 0 ∞ ∫ 0 ∞ sinh ( x y ) e − x 2 − y 2 d x d y = 2 ∫ 0 ∞ ∫ 0 ∞ ( e − x 2 + x y − y 2 − e − x 2 − x y − y 2 ) d x d y . The final integral can be computed with various tools ranging from brutal-force to multivariate normal distribution. Here, we will apply the polar-coordinates change. Substituting ( x , y ) = ( r cos θ , r sin θ ) , r = 0 ∑ ∞ ( 2 r + 1 ) ! r ! 2 = ∫ 0 π / 2 ∫ 0 ∞ 2 r ( e − r 2 ( 1 − cos θ sin θ ) − e − r 2 ( 1 + cos θ sin θ ) ) d r d θ = ∫ 0 π / 2 ( 1 − cos θ sin θ 1 − 1 + cos θ sin θ 1 ) d θ . Substituting t = tan θ , r = 0 ∑ ∞ ( 2 r + 1 ) ! r ! 2 = ∫ 0 ∞ ( 1 − t + t 2 1 − 1 + t + t 2 1 ) d t = 3 3 4 π − 3 3 2 π = 3 3 2 π . Therefore ( a , b ) = ( 2 , 3 ) and their sum is 5 .
We can see that
r = 0 ∑ ∞ ( 2 r + 1 ) ! ( r ! ) 2 = r = 0 ∑ ∞ B ( r + 1 , r + 1 ) = r = 0 ∑ ∞ 2 ∫ 0 2 π ( sin θ × cos θ ) 2 r + 1 d θ = r = 0 ∑ ∞ ∫ 0 2 π 2 2 r ( sin 2 θ ) 2 r + 1 d θ = ∫ 0 2 π r = 0 ∑ ∞ 2 2 r ( sin 2 θ ) 2 r + 1 d θ = ∫ 0 2 π 1 − 2 2 ( sin 2 θ ) 2 ( sin 2 θ ) d θ = 4 ∫ 0 2 π 3 + ( cos 2 θ ) 2 ( sin 2 θ ) d θ
let cos 2 θ = t , then d t = − 2 × s i n 2 θ d θ
= − 2 ∫ 1 − 1 3 + t 2 d t = [ 3 2 tan − 1 ( 3 t ) ] − 1 1 = 3 2 ( tan − 1 3 1 − tan − 1 3 − 1 ) = 3 3 2 π
Thus, a + b = 2 + 3 = 5
Problem Loading...
Note Loading...
Set Loading...
We have r = 0 ∑ ∞ ( 2 r + 1 ) ! ( r ! ) 2 = r = 0 ∑ ∞ Γ ( 2 r + 2 ) Γ ( r + 1 ) 2 = r = 0 ∑ ∞ B ( r + 1 , r + 1 ) = r = 0 ∑ ∞ ∫ 0 1 x r ( 1 − x ) r d x = ∫ 0 1 1 − x ( 1 − x ) 1 d x = ∫ 0 1 x 2 − x + 1 1 d x = [ 3 2 tan − 1 ( 3 2 x − 1 ) ] 0 1 = 3 4 tan − 1 3 1 = 3 4 × 6 1 π = 3 3 2 π making the answer 2 + 3 = 5 .