Summing up the floor

Calculus Level 4

I = 0 x t d t \large I = \int_{0}^{x} \lfloor t \rfloor \ dt

Find I I in terms of x x , where x x is a real positive number

Notation : \lfloor \cdot \rfloor denotes the floor function .

None of these choices 1 2 x ( x 1 ) \dfrac{1}{2}x(x-1) 1 2 x ( x + 1 ) \dfrac{1}{2}x(x+1) 1 2 x ( x + { x } 1 ) \dfrac{1}{2} \lfloor x \rfloor \left( x+\{ x \} - 1 \right) 1 2 x ( x + { x } + 1 ) \dfrac{1}{2} \lfloor x \rfloor \left( x+\{ x \} +1 \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jul 9, 2016

I = 0 x t d t = 0 1 0 d t + 1 2 1 d t + + x 1 x x 1 d t + x x x d t I = 0 + 1 + 2 + 3 + + x 1 + x ( x x ) I = x ( x 1 ) 2 + x { x } I = x 2 ( x 1 + 2 { x } ) I = x 2 ( x + { x } 1 ) I=\displaystyle \int_{0}^{x} \lfloor t \rfloor \cdot dt = \displaystyle \int_{0}^{1} 0\cdot dt+\displaystyle \int_{1}^{2} 1\cdot dt+\cdots+\displaystyle \int_{\lfloor x \rfloor -1}^{\lfloor x \rfloor } \lfloor x \rfloor-1\cdot dt+\displaystyle \int_{\lfloor x \rfloor }^{x}\lfloor x \rfloor \cdot dt \\ I = 0+1+2+3+\cdots +\lfloor x \rfloor-1+\lfloor x \rfloor(x-\lfloor x \rfloor) \\ I = \dfrac{\lfloor x \rfloor(\lfloor x \rfloor-1)}{2}+\lfloor x \rfloor \cdot \{ x \} \\ I = \dfrac{\lfloor x \rfloor}{2} \left( \lfloor x \rfloor-1+2\{ x \} \right) \\ \boxed{I = \dfrac{\lfloor x \rfloor}{2} \left( x+\{ x\}-1 \right) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...