Summing up the reciprocals of Fibonacci numbers

Calculus Level 5

j = 1 ( F j ) 1 = ? \large \sum_{j=1}^{\infty} {\left( F_j \right)}^{-1} \ = \ ?

\

Notation: F n F_n denotes the n th n^{\text{th}} Fibonacci number . A Fibonacci number is a number of the sequence generated by F 0 = 0 F_0 = 0 , F 1 = 1 F_1 = 1 and F n = F n 1 + F n 2 F_n = F_{n-1} + F_{n-2} for n 2 n \ge 2 .


For more, click here .


The answer is 3.3598856662.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Mar 23, 2017

This is the Reciprocal Fibonacci Constant, and the closed form of this constant is

5 4 ( 1 2 L o g ( ϕ ) ( L o g ( 5 ) + 2 ψ ϕ 4 ( 1 ) 4 ψ ϕ 2 ( 1 ) ) + ( ϑ 2 ( 0 , ϕ 2 ) ) 2 ) = 3.3598856662431775532... \dfrac { \sqrt { 5 } }{ 4 } \left( \dfrac { 1 }{ 2Log\left( \phi \right) } \left( Log\left( 5 \right) +2{ \psi }_{ { \phi }^{ -4 } }\left( 1 \right) -4{ \psi }_{ { \phi }^{ -2 } }\left( 1 \right) \right) \quad +{ \quad \left( \vartheta _{ 2 }\left( 0,{ \phi }^{ -2 } \right) \right) }^{ 2 } \right) =3.3598856662431775532...

where ϕ \phi is the golden ratio , ψ \psi is the q-Polygamma function , and ϑ \vartheta is the elliptic theta function

It's much easier to just add up the first 30 terms or so to get 5 decimal point accuracy.

Mark Hennings
Mar 23, 2017

With ϕ = 1 2 ( 1 + 5 ) \phi= \tfrac12(1+\sqrt{5}) , we have F n = 1 5 ( ϕ n ( ϕ 1 ) n ) F_n = \tfrac{1}{\sqrt{5}}\big(\phi^n - (-\phi^{-1})^n\big) , and hence 1 F n = 5 ϕ n ( ϕ 1 ) n = 5 ϕ n ( 1 ( ϕ 2 ) n ) 1 = 5 k 0 ( 1 ) k n ϕ ( 2 k + 1 ) n \frac{1}{F_n} \; = \; \frac{\sqrt{5}}{\phi^n -(-\phi^{-1})^n} \; = \; \frac{\sqrt{5}}{\phi^n}\big(1 - (-\phi^{-2})^n\big)^{-1} \; = \; \sqrt{5}\sum_{k \ge 0}(-1)^{kn} \phi^{-(2k+1)n} so that n = 1 1 F n = 5 k = 0 n = 1 ( 1 ) k n ϕ ( 2 k + 1 ) n = 5 k = 0 ( 1 ) k ϕ 2 k + 1 ( 1 ) k \sum_{n=1}^\infty \frac{1}{F_n} \; = \;\sqrt{5}\sum_{k = 0}^\infty \sum_{n=1}^\infty (-1)^{kn}\phi^{-(2k+1)n} \; = \; \sqrt{5}\sum_{k=0}^\infty \frac{(-1)^k}{\phi^{2k+1} - (-1)^k} This series is alternating, and its summands converge to 0 0 exponentially, so we have rapid convergence. The approximation 5 k = 0 12 ( 1 ) k ϕ 2 k + 1 ( 1 ) k 3.35989 \sqrt{5}\sum_{k=0}^{12} \frac{(-1)^k}{\phi^{2k+1} - (-1)^k} \approx \boxed{3.35989} gives the sum to 5 5 DP accuracy.

Amazing! Brilliant solution. (+1)

Remark: You accidentally left out the term 5 \sqrt{5} here

n = 1 1 F n = 5 k = 0 n = 1 ( 1 ) k n ϕ ( 2 k + 1 ) n = 5 k = 0 ( 1 ) k ϕ 2 k + 1 ( 1 ) k \sum_{n=1}^\infty \frac{1}{F_n} \; = \;\sqrt{5}\sum_{k = 0}^\infty \sum_{n=1}^\infty (-1)^{kn}\phi^{-(2k+1)n} \; = \underbrace{\sqrt{5}} \; \sum_{k=0}^\infty \frac{(-1)^k}{\phi^{2k+1} - (-1)^k}

And finally

k = 0 12 ( 1 ) k ϕ 2 k + 1 ( 1 ) k 1.502589 5 k = 0 12 ( 1 ) k ϕ 2 k + 1 ( 1 ) k 3.35989 \sum_{k=0}^{12} \frac{(-1)^k}{\phi^{2k+1} - (-1)^k} \approx 1.502589 \\ \Updownarrow \\ \sqrt{5} \sum_{k=0}^{12} \frac{(-1)^k}{\phi^{2k+1} - (-1)^k} \approx \ 3.35989

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Fixed. Thanks for spotting the typos...

Mark Hennings - 4 years, 2 months ago

There was one more query, how did you get this?

5 ϕ n ( 1 ( ϕ 2 ) n ) 1 = 5 k 0 ( 1 ) k n ϕ ( 2 k + 1 ) n \frac{\sqrt{5}}{\phi^n}\big(1 - (-\phi^{-2})^n\big)^{-1} \; = \; \sqrt{5}\sum_{k \ge 0}(-1)^{kn} \phi^{-(2k+1)n}

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

expanding an infinite GP.

Mark Hennings - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...