SUMO-1

Algebra Level 3

Express 2 3 1 2 3 + 1 × 3 3 1 3 3 + 1 × 4 3 1 4 3 + 1 × × 1 6 3 1 1 6 3 + 1 \frac{2^3-1}{2^3+1}\times\frac{3^3-1}{3^3+1}\times\frac{4^3-1}{4^3+1}\times\dots\times\frac{16^3-1}{16^3+1} as a fraction in lowest terms.

SUMO: Stanford University Math Organization

1 e \frac{1}{e} 90 131 \frac{90}{131} 80 135 \frac{80}{135} 91 136 \frac{91}{136} 2 3 \frac{2}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Jun 13, 2018

Note the expression is: n = 2 k n 3 1 n 3 + 1 = n = 2 k ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) = ( n = 2 k n 1 n + 1 ) ( n = 2 k n 2 + n + 1 n 2 n + 1 . ) \prod_{n=2}^{k} \frac{n^3-1}{n^3+1} = \prod_{n=2}^{k}\frac{\Big(n-1\Big)\Big(n^2+n+1\Big)}{\Big(n+1\Big)\Big(n^2-n+1\Big)} =\Bigg (\prod_{n=2}^{k}\frac{n-1}{n+1}\Bigg)\Bigg(\prod_{n=2}^{k}\frac{n^2+n+1}{n^2-n+1}.\Bigg)

Each product telescopes, the final result is: ( 1 × 2 ) k ( k + 1 ) × ( k 2 + k + 1 ) 3 for k = 16 the value of the expression is 91 136 . \frac{(1\times2)}{k(k+1)}\times\frac{(k^2+k+1)}{3}\implies \text { for } k=16 \text{ the value of the expression is } \frac{91}{136}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...