How many ordered triples satisfy the following expression?
( are integers).
SUMO: Stanford University Math Organization
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us solve for x in terms of y , z to yield:
( y z + 4 − 2 y − 2 z ) x = 2 y z + 7 − 4 y − 4 z ;
or x = y z + 4 − 2 ( y + z ) 2 y z + 7 − 4 ( y + z ) ;
or x = ( z − 2 ) y − 2 ( z − 2 ) 2 y ( z − 2 ) − 4 ( z − 2 ) − 1 ;
or x = ( y − 2 ) ( z − 2 ) 2 ( y − 2 ) ( z − 2 ) − 1 ;
or x = 2 − ( y − 2 ) ( z − 2 ) 1 .
In order for x , y , z ∈ Z , we require that the denominator be set to ( y − 2 ) ( z − 2 ) = ± 1 . This can only be accomplished for the pairs:
( y , z ) = ( 1 , 1 ) ; ( 3 , 3 ) ; ( 1 , 3 ) ; ( 3 , 1 ) :
which finally yield the FOUR ordered-triplets:
( x , y , z ) = ( 1 , 1 , 1 ) ; ( 1 , 3 , 3 ) ; ( 3 , 1 , 3 ) ; ( 3 , 3 , 1 )