SUMO-2

Algebra Level 4

How many ordered triples satisfy the following expression?

( x , y and z x,y \text{ and } z are integers).

x y z + 4 ( x + y + z ) = 2 ( x y + x z + y z ) + 7 xyz+4(x+y+z)=2(xy+xz+yz)+7

SUMO: Stanford University Math Organization

1 2 3 4 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tom Engelsman
Jun 17, 2018

Let us solve for x x in terms of y , z y, z to yield:

( y z + 4 2 y 2 z ) x = 2 y z + 7 4 y 4 z (yz + 4 -2y - 2z)x = 2yz + 7 - 4y - 4z ;

or x = 2 y z + 7 4 ( y + z ) y z + 4 2 ( y + z ) x = \frac{2yz + 7 - 4(y+z)}{yz + 4 - 2(y+z)} ;

or x = 2 y ( z 2 ) 4 ( z 2 ) 1 ( z 2 ) y 2 ( z 2 ) x = \frac{2y(z-2) - 4(z-2) - 1}{(z-2)y - 2(z-2)} ;

or x = 2 ( y 2 ) ( z 2 ) 1 ( y 2 ) ( z 2 ) x = \frac{2(y-2)(z-2) - 1}{(y-2)(z-2)} ;

or x = 2 1 ( y 2 ) ( z 2 ) x = 2 - \frac{1}{(y-2)(z-2)} .

In order for x , y , z Z x,y,z \in \mathbb{Z} , we require that the denominator be set to ( y 2 ) ( z 2 ) = ± 1 (y-2)(z-2) = \pm 1 . This can only be accomplished for the pairs:

( y , z ) = ( 1 , 1 ) ; ( 3 , 3 ) ; ( 1 , 3 ) ; ( 3 , 1 ) (y,z) = (1,1); (3,3); (1,3); (3,1) :

which finally yield the FOUR ordered-triplets:

( x , y , z ) = ( 1 , 1 , 1 ) ; ( 1 , 3 , 3 ) ; ( 3 , 1 , 3 ) ; ( 3 , 3 , 1 ) \boxed{(x,y,z) = (1,1,1); (1,3,3); (3,1,3); (3,3,1)}

Aaghaz Mahajan
Jun 13, 2018

A simple use of SFFT!!!

Joe Mansley
Sep 4, 2018

Rearranging and factoring yields ( x 2 ) ( y 2 ) ( z 2 ) = 1 (x-2)(y-2)(z-2)=1 , which has 4 integer solutions.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...