Infinite Sums

Calculus Level 3

If 1 9 + 1 18 + 1 30 + 1 45 + 1 63 + = m n \dfrac{1}{9}+\dfrac{1}{18}+\dfrac{1}{30}+\dfrac{1}{45}+\dfrac{1}{63}+ \cdots =\dfrac{m}{n} , where m m and n n are coprime positive integers, then find m + n m+n .

This problem is a part of the sets Advanced is basic and Summing Sums .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

This series can be written as

1 3 ( 1 3 + 1 6 + 1 10 + 1 15 + . . . ) = 1 3 k = 2 2 n ( n + 1 ) = \dfrac{1}{3}\left(\dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{10} + \dfrac{1}{15} + ... \right) = \dfrac{1}{3} \displaystyle\sum_{k=2}^{\infty} \dfrac{2}{n(n + 1)} =

2 3 k = 2 ( 1 n 1 n + 1 ) = 2 3 1 2 = 1 3 , \dfrac{2}{3}\displaystyle\sum_{k=2}^{\infty}\left(\dfrac{1}{n} - \dfrac{1}{n + 1}\right) = \dfrac{2}{3}*\dfrac{1}{2} = \dfrac{1}{3},

where the fact that the last summation was of a telescoping series was used.

Thus m + n = 1 + 3 = 4 . m + n = 1 + 3 = \boxed{4}.

Piero Sarti
Mar 11, 2018

Let S = 1 3 + 1 6 + 1 10 + 1 15 + 1 21 + S = \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{10} + \dfrac{1}{15} + \dfrac{1}{21} + \cdots .

Now consider the following sum X = 1 9 + 1 18 + 1 30 + 1 45 + 1 63 + = 1 3 S X = \dfrac{1}{9} + \dfrac{1}{18} + \dfrac{1}{30} + \dfrac{1}{45} + \dfrac{1}{63} + \cdots = \dfrac{1}{3}S .

Taking a factor of 1 3 \dfrac{1}{3} out we get that, X = 1 3 ( 1 3 + 1 6 + 1 10 + 1 15 + 1 21 + ) X = \dfrac{1}{3}\left(\dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{10} + \dfrac{1}{15} + \dfrac{1}{21} + \cdots\right) .

Now rewrite every denominator as such, X = 1 3 ( 1 3 + 1 2 × 3 + 1 2 × 5 + 1 3 × 5 + 1 3 × 7 + 1 4 × 7 + ) X = \dfrac{1}{3}\left(\dfrac{1}{3} + \dfrac{1}{2\times 3} + \dfrac{1}{2\times 5} + \dfrac{1}{3 \times 5} + \dfrac{1}{3 \times 7} + \dfrac{1}{4 \times 7} + \cdots\right) .

Notice that we can rewrite X X as X = 1 3 ( 1 3 × ( 1 + 1 2 ) + 1 5 × ( 1 2 + 1 3 ) + 1 7 × ( 1 3 + 1 4 ) + ) X = \dfrac{1}{3}\left(\dfrac{1}{3}\times\left(1 + \dfrac{1}{2}\right) + \dfrac{1}{5}\times\left(\dfrac{1}{2} + \dfrac{1}{3}\right) + \dfrac{1}{7}\times\left(\dfrac{1}{3} + \dfrac{1}{4}\right) + \cdots\right) .

Then X = 1 3 ( 1 3 × 3 2 + 1 5 × 5 6 + 1 7 × 7 12 + ) X = \dfrac{1}{3}\left(\dfrac{1}{3}\times\dfrac{3}{2} + \dfrac{1}{5}\times\dfrac{5}{6} + \dfrac{1}{7}\times\dfrac{7}{12} + \cdots\right) .

Now cancelling out, X = 1 3 ( 1 2 + 1 6 + 1 12 + 1 20 + 1 30 + ) X = \dfrac{1}{3}\left(\dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12}+ \dfrac{1}{20} + \dfrac{1}{30} + \cdots\right) .

Finally taking out 1 2 \dfrac{1}{2} , we get that, X = 1 3 ( 1 2 ( 1 + 1 3 + 1 6 + 1 10 + 1 15 + 1 21 + ) ) X = \dfrac{1}{3}\left(\dfrac{1}{2}\left(1 + \dfrac{1}{3} + \dfrac{1}{6}+ \dfrac{1}{10} + \dfrac{1}{15} + \dfrac{1}{21} + \cdots\right)\right) .

Notice now that, X = 1 3 ( 1 2 ( 1 + S ) ) X = \dfrac{1}{3}\left(\dfrac{1}{2}\left(1 + S\right)\right) and that therefore 1 3 S = 1 3 ( 1 2 ( 1 + S ) ) \dfrac{1}{3}S = \dfrac{1}{3}\left(\dfrac{1}{2}\left(1 + S\right)\right) .

We get that, S = 1 2 ( 1 + S ) S = \dfrac{1}{2}\left(1 + S\right) and S = 1 \therefore S = 1 . But X = 1 3 S = 1 3 X = \dfrac{1}{3}S = \dfrac{1}{3} so m = 1 , n = 3 m = 1, n = 3 and m + n = 1 + 3 = 4 m + n = 1 + 3 = \boxed{4} .

Ashutosh Sharma
Jan 30, 2018

sequence for denominator is 3/2(n^2+3n+2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...