Sums of Permutations

Four digits are selected from the set {1,2,3,4,5} to form a 4-digit number. Find the sum of all possible permutations.


The answer is 399960.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mahmoud Sofan
Jul 29, 2014

The possible permutations are 120 ... and there are 5 numbers and 4 places...So every number will repeat 24 times in each place ( units place , tens place , etc ) ... Now we can sum each place like [ 24 ( 1+2+3+4+5) ] and add the rest to the other place until we have the complete number and it will be 399960 Sorry For bad language :)

Nihar Mahajan
Jan 31, 2015

Smallest correct solution -

As the mean digit in each column is 3, each number is 3333, on average. Hence the sum is 120 * 3333 = 399,960.

Aniket Verma
Jan 16, 2015

T h e s u m o f p e r m u t a t i o n s o f a l l The ~sum ~of ~permutations ~of ~all 4 4 d i g i t n o . s u s i n g d i g i t s digit~ no.s~ using~ digits 1 , 2 , 3 , 4 = [ 1111 × 6 × ( 1 + 2 + 3 + 4 ) ] = 66660 1,2,3,4 = [1111 \times {6 \times (1+2+3+4)}] = 66660

s i m i l a r l y s u m o f p e r m u t a t i o n s u s i n g similarly~ sum ~of ~permutations~ using 1 , 2 , 3 , 5 = [ 1111 × 6 × ( 1 + 2 + 3 + 5 ) ] = 73326 1,2,3,5 = [1111 \times {6 \times (1+2+3+5)}] = 73326

\dots \dots \dots u s i n g using 1 , 2 , 4 , 5 = [ 1111 × 6 × ( 1 + 2 + 4 + 5 ) ] = 79992 1,2,4,5 = [1111 \times {6 \times ( 1+2+4+5)}] = 79992

\dots \dots \dots u s i n g using 1 , 3 , 4 , 5 = [ 1111 × 6 × ( 1 + 3 + 4 + 5 ) ] = 86658 1,3,4,5 = [1111 \times {6 \times (1+3+4+5)}] = 86658

\dots \dots \dots u s i n g using 2 , 3 , 4 , 5 = [ 1111 × 6 × ( 2 + 3 + 4 + 5 ) ] = 93324 2,3,4,5 = [1111 \times {6 \times (2+3+4+5)}] = 93324

t h e r e f o r e t o t a l s u m o f a l l p e r m u t a t i o n s = 399960 therefore ~total~ sum ~of~ all~ permutations = 399960

Rohit Sachdeva
Aug 26, 2014

Let N=abcd=1000a+100b+10c+d

(I am using £ as summation sign)

£N=1000£a + 100£b + 10£c + £d

£d = sum of all last digits in all permutations= 4P3(1+2+3+4+5)= 360

Similarly £a=£b=£c=360

£N=360(1000+100+10+1)=399960

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...