Sums of positive consecutive Integers

Number Theory Level pending

How many different ways can the number 131,072 be expressed as a sum of 2 or more positive consecutive integers?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirudh Sreekumar
Dec 11, 2017

Note that , 131072 = 2 17 We can restate the question as i = 1 n i j = 1 m j = 2 17 ( n m ) 2 n × ( n + 1 ) 2 m × ( m + 1 ) 2 = 2 17 n × ( n + 1 ) m × ( m + 1 ) = 2 18 ( n 2 m 2 ) + ( n m ) = 2 18 ( n m ) ( n + m + 1 ) = 2 18 Note that, n m ( m o d 2 ) n m + 2 m ( m o d 2 ) n m ( m o d 2 ) n + m ( m o d 2 ) one of ( n m ) , ( n + m + 1 ) is odd ( n m ) ( n + m + 1 ) = 2 n × p , where p is odd ( n m ) ( n + m + 1 ) 2 18 2 17 cannot be expressed as the sum of consecutive positive integers for any string length 2 \begin{aligned}\text{Note that ,}&\\ 131072&=2^{17}\\ \text{We can restate the question as }\\ \sum_{i=1}^n i-\sum_ {j=1}^m j &=2^{17} \hspace{4mm}\color{#3D99F6}(n-m)\geq2\\ \implies \dfrac{n\times(n+1)}{2}-\dfrac{m\times(m+1)}{2}&=2^{17}\\ n\times(n+1)-m\times(m+1)&=2^{18}\\ (n^2-m^2)+(n-m)&=2^{18}\\ (n-m)(n+m+1)&=2^{18}\\ \text{Note that,}&\\ n-m\pmod{2}&\equiv n-m+2m\pmod{2}\\ \implies n-m\pmod{2}&\equiv n+m\pmod{2}\\ \implies\text{ one of } (n-m),(n+m+1) &\text{ is odd}\\ \implies (n-m)(n+m+1)&=2^n\times p,\text{where p is odd} \\ \implies (n-m)(n+m+1)&\neq2^{18}\\ \implies2^{17} \text{cannot be expressed } &\text{ as the sum of consecutive positive integers for any string length}\geq2 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...