Sums with functions

Algebra Level 3

k = 1 f ( x ) g ( x ) = ? \sum_{k=1}^{f(x)} g(x) = \, ?

g'(x) f(x)*g(x) f(x)^g(x) g(x)^f(x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Oct 4, 2016

k = 1 f ( x ) g ( x ) \displaystyle \sum_{k=1}^{f(x)}g(x)

In this equation, there is no use of k k , in function g g . Therefore

k = 1 f ( x ) g ( x ) = m ( g ( x ) + g ( x ) + g ( x ) + + g ( x ) f ( x ) terms ; m R assuming any variable m, so that even if f(x) returns a non-integer result it won’t affect. Now let’s ignore it k = 1 f ( x ) g ( x ) = f ( x ) × g ( x ) \displaystyle \sum_{k=1}^{f(x)} g(x)= m(\underbrace{g(x) + g(x) + g(x) + \ldots + g(x)}_{f(x)\text{ terms}}; \\ \displaystyle m \in R \text{ assuming any variable m, so that even if f(x) returns a non-integer result it won't affect. Now let's ignore it}\\ \displaystyle \therefore \sum_{k=1}^{f(x)} g(x) = f(x)\times g(x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...