Sumtegrals!

Calculus Level 4

n = 0 2 n ( n + 3 ) n ! \large \sum_{n=0}^\infty \frac{2^n}{(n+3)n!}

If the infinite sum above can be expressed as 1 a ( e b 1 ) \frac1a (e^b-1) , find the value of a + b a+b .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Plinio Sd
Jul 17, 2015

The expansion of the exponential function around zero is given by e x = n = 0 x n n ! . e^x = \sum_{n=0}^\infty \dfrac{x^n}{n!}. Then, multiplying both sides by x 2 x^2 , we find that x 2 e x = n = 0 x n + 2 n ! . x^2 e^x = \sum_{n=0}^\infty \dfrac{x^{n+2}}{n!}. After that, we integrate both sides with respect to x x in the interval [ 0 , 2 ] [0,2] . Note that we can interchange the integral with the sum, because the sum is absolutely convergent. 0 2 x 2 e x d x = n = 0 ( 0 2 x n + 2 n ! d x ) = n = 0 2 n + 3 ( n + 3 ) n ! . \int_0^2 x^2 e^x dx = \sum_{n=0}^\infty \left( \int_0^2 \dfrac{x^{n+2}}{n!} dx \right) = \sum_{n=0}^\infty \dfrac{2^{n+3}}{(n+3)n!}. Finally, we can see that our desired sum is given by n = 0 2 n ( n + 3 ) n ! = 1 8 0 2 x 2 e x d x = 1 8 [ ( x 2 2 x + 2 ) e x ] x = 0 2 = 1 4 ( e 2 1 ) . \sum_{n=0}^\infty \dfrac{2^{n}}{(n+3)n!} = \dfrac{1}{8} \int_0^2 x^2 e^x dx = \dfrac{1}{8} \left[ (x^2-2x+2) e^x \right]_{x=0}^2 = \boxed{ \dfrac{1}{4} (e^2 - 1) }.

@Plinio SD Exactly the way I solved it! .... thank you :)

Abhinav Raichur - 5 years, 11 months ago
Rimson Junio
Jul 16, 2015

n = 0 2 n ( n + 3 ) n ! = n = 0 2 n ( n + 2 ) ( n + 1 ) ( n + 3 ) ! = n = 3 2 n 3 ( n 1 ) ( n 2 ) n ! = 1 8 n = 3 2 n ( n 1 ) ( n 2 ) n ! \large\sum_{n=0}^\infty\frac{2^n}{(n+3)n!}=\large\sum_{n=0}^\infty\frac{2^n(n+2)(n+1)}{(n+3)!}=\large\sum_{n=3}^\infty\frac{2^{n-3}(n-1)(n-2)}{n!}=\frac{1}{8}\large\sum_{n=3}^\infty\frac{2^{n}(n-1)(n-2)}{n!}

Consider the following infinite series for e x e^x obtained by getting its zeroth, first, and second derivatives evaluated at x = 2 x=2 . e 2 = n = 0 2 n n ! e^2=\large\sum_{n=0}^\infty\frac{2^n}{n!} e 2 = n = 0 n ( 2 ) n 1 n ! e^2=\large\sum_{n=0}^\infty\frac{n(2)^{n-1}}{n!} e 2 = n = 0 n ( n 1 ) ( 2 ) n 2 n ! e^2=\large\sum_{n=0}^\infty\frac{n(n-1)(2)^{n-2}}{n!} The second equation is equivalent to 2 e 2 = n = 0 n ( 2 ) n n ! 2e^2=\large\sum_{n=0}^\infty\frac{n(2)^{n}}{n!} and the third equation to 4 e 2 = n = 0 n ( n 1 ) ( 2 ) n n ! 4e^2=\large\sum_{n=0}^\infty\frac{n(n-1)(2)^{n}}{n!}

1 8 n = 3 2 n ( n 1 ) ( n 2 ) n ! = 1 8 ( n = 0 n ( n 1 ) ( 2 ) n n ! 2 n = 0 n ( 2 ) n n ! + 2 n = 0 2 n n ! 2 ) = 1 8 ( 4 e 2 2 ( 2 e 2 ) + 2 e 2 2 ) = 1 4 ( e 2 1 ) \frac{1}{8}\large\sum_{n=3}^\infty\frac{2^{n}(n-1)(n-2)}{n!}=\frac{1}{8}(\large\sum_{n=0}^\infty\frac{n(n-1)(2)^{n}}{n!}-2\large\sum_{n=0}^\infty\frac{n(2)^{n}}{n!}+2\large\sum_{n=0}^\infty\frac{2^n}{n!}-2)=\frac{1}{8}(4e^{2}-2(2e^2)+2e^2-2)=\frac{1}{4}(e^2-1) Thus, a + b = 6 a+b=6

@Rimson Junio good solution ... Thanks :)

Abhinav Raichur - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...