Sun Embracing the Moon

Geometry Level 3

As shown above, the s m a l l e r \color{cyan}{smaller} circle is tangent to chords P Q PQ , Q R QR and internally tangent to the l a r g e r \color{#EC7300}{larger} circle.

If the chords P Q PQ and Q R QR have chord lengths 14 14 and 40 40 respectively and the diameter \textbf{diameter} of the l a r g e r \color{#EC7300}{larger} circle is 50 50 . Find the radius \textbf{radius} of the s m a l l e r \color{cyan} {smaller} circle.

Let the radius \textbf{radius} of the s m a l l e r \color{cyan}{smaller} circle be r r , compute your answer as 81 r 81r .

This is part of the set Fun With Problem-Solving .


The answer is 1300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Donglin Loo
Jun 13, 2018

The radius of the larger circle is 25 25

Since A C P Q AC\perp PQ and A P = A Q AP=AQ ,

we have P C = C Q = 7 PC=CQ=7

Similarly, Q D = D R = 20 QD=DR=20

cos P Q A = 7 25 \cos \angle PQA=\cfrac{7}{25}

tan P Q A = 24 7 \Rightarrow \tan \angle PQA=\cfrac{24}{7}

cos R Q A = 20 25 = 4 5 \cos \angle RQA=\cfrac{20}{25}=\cfrac{4}{5}

tan R Q A = 3 4 \Rightarrow \tan \angle RQA=\cfrac{3}{4}

Let P Q A = α , R Q A = β \angle PQA=\alpha, \angle RQA=\beta

tan α = 24 7 , tan β = 3 4 \Rightarrow \tan \alpha=\cfrac{24}{7}, \tan \beta=\cfrac{3}{4}

tan ( α + β ) = 24 7 + 3 4 1 24 7 3 4 = 117 44 \tan(\alpha+\beta)=\cfrac{\cfrac{24}{7}+\cfrac{3}{4}}{1-\cfrac{24}{7}\cdot\cfrac{3}{4}}=-\cfrac{117}{44}

Let α + β = 2 γ \alpha+\beta=2\gamma

tan ( α + β ) = tan 2 γ \Rightarrow \tan(\alpha+\beta)=\tan2\gamma

2 tan γ 1 ( tan γ ) 2 = 117 44 \cfrac{2\tan\gamma}{1-(\tan\gamma)^2}=-\cfrac{117}{44}

88 tan γ = 117 117 ( tan γ ) 2 -88\tan\gamma=117-117(\tan\gamma)^2

117 ( tan γ ) 2 88 tan γ 117 = 0 117(\tan\gamma)^2-88\tan\gamma-117=0

( 13 tan γ + 9 ) ( 9 tan γ 13 ) = 0 (13\tan\gamma+9)(9\tan\gamma-13)=0

tan γ = 9 13 \tan\gamma=-\cfrac{9}{13} or tan γ = 13 9 \tan\gamma=\cfrac{13}{9}

0 < γ < π 2 \because 0<\gamma<\cfrac{\pi}{2}

tan γ > 0 \therefore \tan\gamma>0

tan γ = 9 13 \therefore \tan\gamma=-\cfrac{9}{13} is unsuitable

tan γ = 13 9 \therefore \tan\gamma=\cfrac{13}{9}

P Q F = F Q R = γ \angle PQF=\angle FQR=\gamma

tan P Q F = 13 9 \therefore \tan \angle PQF=\cfrac{13}{9}

sin P Q F = 13 1 3 2 + 9 2 = 13 250 = 13 5 10 \sin\angle PQF=\cfrac{13}{\sqrt{13^2+9^2}}=\cfrac{13}{\sqrt{250}}=\cfrac{13}{5\sqrt{10}}

sin P Q F = r Q F \sin\angle PQF=\cfrac{r}{QF}

r Q F = 13 5 10 \therefore \cfrac{r}{QF}=\cfrac{13}{5\sqrt{10}}

Q F = 5 10 r 13 QF=\cfrac{5\sqrt{10}r}{13}

Q A = 25 QA=25

\because the two circles are internally tangent

\therefore the two centers A , F A,F and the tangent point E E are collinear.

F A = 25 r \therefore FA=25-r

F Q A = α γ \angle FQA=\alpha-\gamma

tan F Q A = tan ( α γ ) = tan α tan γ 1 + tan α tan γ = 24 7 13 9 1 + 24 7 13 9 = 125 375 = 1 3 \tan \angle FQA=\tan(\alpha-\gamma)=\cfrac{\tan\alpha-\tan\gamma}{1+\tan\alpha\tan\gamma}=\cfrac{\cfrac{24}{7}-\cfrac{13}{9}}{1+\cfrac{24}{7}\cdot\cfrac{13}{9}}=\cfrac{125}{375}=\cfrac{1}{3}

cos F Q A = 3 1 2 + 3 2 = 3 10 \cos \angle FQA=\cfrac{3}{\sqrt{1^2+3^2}}=\cfrac{3}{\sqrt{10}}

By Cosine Rule ,

( 25 r ) 2 = ( 5 10 r 13 ) 2 + 2 5 2 2 5 10 r 13 25 3 10 (25-r)^2=(\cfrac{5\sqrt{10}r}{13})^2+25^2-2\cdot\cfrac{5\sqrt{10}r}{13}\cdot25\cdot\cfrac{3}{\sqrt{10}}

( 25 r ) 2 = 250 r 2 1 3 2 + 2 5 2 750 r 13 (25-r)^2=\cfrac{250r^2}{13^2}+25^2-\cfrac{750r}{13}

169 ( 25 r ) 2 = 250 r 2 + 2 5 2 169 750 r 13 169(25-r)^2=250r^2+25^2\cdot169-750r\cdot13

169 r 2 169 50 r + 169 2 5 2 = 250 r 2 + 2 5 2 169 750 r 13 169r^2-169\cdot50r+169\cdot25^2=250r^2+25^2\cdot169-750r\cdot13

169 r 2 169 50 r = 250 r 2 750 r 13 169r^2-169\cdot50r=250r^2-750r\cdot13

81 r 2 + ( 169 50 750 13 ) r = 0 81r^2+(169\cdot50-750\cdot13)r=0

81 r 2 + 13 50 ( 13 15 ) = 0 81r^2+13\cdot50(13-15)=0

81 r 2 2 13 50 = 0 81r^2-2\cdot13\cdot50=0

81 r 2 1300 r = 0 81r^2-1300r=0

r ( 81 r 1300 ) = 0 r(81r-1300)=0

r = 0 r=0 or r = 1300 81 r=\cfrac{1300}{81}

r > 0 \because r>0

r = 0 \therefore r=0 is unsuitable

r = 1300 81 r=\cfrac{1300}{81}

81 r = 1300 81r=\boxed{1300}

Amazing solution

Valentin Duringer - 1 year, 2 months ago
David Vreken
Jun 17, 2018

Let the center of the larger circle be S S and draw three radii S V SV (the perpendicular bisector of chord P Q PQ with intersection T T ), S W SW (the perpendicular bisector of chord Q R QR with intersection U U ), and S Q SQ .

Then as radii of the larger circle, S V = S W = S Q = 1 2 50 = 25 SV = SW = SQ = \frac{1}{2}50 = 25 . Also, Q T = 1 2 14 = 7 QT = \frac{1}{2}14 = 7 and Q U = 1 2 40 = 20 QU = \frac{1}{2}40 = 20 . By Pythagorean's Theorem, S U = 2 5 2 2 0 2 = 15 SU = \sqrt{25^2 - 20^2} = 15 and S T = 2 5 2 7 2 = 24 ST = \sqrt{25^2 - 7^2} = 24 , and Q S U = tan 1 ( 20 15 ) = tan 1 ( 4 3 ) \angle QSU = \tan^{-1}(\frac{20}{15}) = \tan^{-1}(\frac{4}{3}) and Q S T = tan 1 ( 7 24 ) \angle QST = \tan^{-1}(\frac{7}{24}) . Using the tangent angle addition formula, tan T S U \tan \angle TSU = = 4 3 + 7 24 1 4 3 7 24 \frac{\frac{4}{3} + \frac{7}{24}}{1 - \frac{4}{3} \frac{7}{24}} = = 117 44 \frac{117}{44} , and so T S U = tan 1 ( 117 44 ) \angle TSU = \tan ^{-1} (\frac{117}{44}) .

Now let the center of the smaller circle be M M and draw two radii M N MN (where N N is the point of tangency of the small circle and chord Q R QR ) and M O MO (where O O is the point of tangency of the small circle and chord P Q PQ ).

Since M N MN and S U SU are perpendicular to the same line P Q PQ , they are parallel, and since M O MO and S T ST are perpendicular to the same line Q R QR , they are parallel, which means O M N = T S U = tan 1 ( 117 44 ) \angle OMN = \angle TSU = \tan ^{-1} (\frac{117}{44}) .

Finally, let K K be the point of tangency between the two circles and draw S K SK (through M M ). Also draw M Q MQ and S L SL where S L SL is perpendicular to M N MN at L L .

Since M O MO and M N MN are radii of circle M M , M O M N MO \cong MN , and since Q M O \triangle QMO and Q M N \triangle QMN are perpendicular triangles with a shared side Q M QM , Q M O Q M N \triangle QMO \cong \triangle QMN by hypotenuse-leg congruency. Therefore, Q M N = Q M O \angle QMN = \angle QMO = = 1 2 O M N \frac{1}{2} \angle OMN = = 1 2 tan 1 ( 117 44 ) \frac{1}{2} \tan ^{-1} (\frac{117}{44}) . By tangent half angle formula, tan Q M N \tan \angle QMN = = tan ( 1 2 tan 1 ( 117 44 ) ) \tan (\frac{1}{2} \tan ^{-1} (\frac{117}{44})) = = sin ( tan 1 ( 117 44 ) ) 1 + cos ( tan 1 ( 117 44 ) ) \frac{\sin (\tan ^{-1} (\frac{117}{44}))}{1 + \cos (\tan ^{-1} (\frac{117}{44}))} = = 117 125 1 + 44 125 = 9 13 \frac{\frac{117}{125}}{1 + \frac{44}{125}} = \frac{9}{13} .

Let r r be the radius of the smaller circle. Then M N = r MN = r and Q N = r tan Q M N = 9 13 r QN = r \tan \angle QMN = \frac{9}{13}r , and the sides of M L S \triangle MLS are S M = S K M K = 25 r SM = SK - MK = 25 - r , L M = M N S U = r 15 LM = MN - SU = r - 15 , and L S = Q U Q N = 20 9 13 r LS = QU - QN = 20 - \frac{9}{13}r . Since M L S \triangle MLS is a right triangle, by Pythagorean Theorem L M 2 + L S 2 = S M 2 LM^2 + LS^2 = SM^2 , so ( r 15 ) 2 + ( 20 9 13 r ) 2 = ( 25 r ) 2 (r - 15)^2 + (20 - \frac{9}{13}r)^2 = (25 - r)^2 , and solving for r > 0 r > 0 gives r = 1300 81 r = \frac{1300}{81} . Therefore, 81 r = 81 1300 81 = 1300 81r = 81 \cdot \frac{1300}{81} = \boxed{1300} .

@David Vreken great solution. Yours take a detour from the infamous cosine rule. By the way, how do you copy my image?Could u teach me?I have wanted to do so to write solution for other people's geometry questions.

donglin loo - 2 years, 11 months ago

Log in to reply

Thanks! To copy an image, you can either press the "prt sc" key on your keyboard (this will copy the entire screen so you will have to crop it later) or you can right click the image and choose "copy image". Once you have a the image copied, you can paste it in an image editor. I usually use Microsoft Paint in Windows.

David Vreken - 2 years, 11 months ago

Log in to reply

Thanks a lot!

donglin loo - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...