Super cubes

Algebra Level 3

99 70 2 3 \sqrt[3]{99-70\sqrt{2}} If the value of the above expression can be expressed in the form of x y x-\sqrt{y} for positive integers x x and y y , find the value of x + y x+y .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rohit Udaiwal
Nov 29, 2015

Proposition: If a + b 3 = x + y \sqrt[3]{a+\sqrt{b}}=x+\sqrt{y} ,then a b 3 = x y \sqrt[3]{a-\sqrt{b}}=x-\sqrt{y}

Proof : a + b = x 3 + y y + 3 x 2 y + 3 x y Equating rational,irrational parts,we get a = x 3 + 3 x y , b = 3 x 2 y + y y a b = x 3 3 x 2 y + 3 x y y y = ( x y ) 3 a b 3 = a b a+\sqrt{b}=x^3+y\sqrt{y}+3x^2\sqrt{y}+3xy \\ \text{Equating rational,irrational parts,we get} \\ a=x^3+3xy,\sqrt{b}=3x^2\sqrt{y}+y\sqrt{y} \implies a-\sqrt{b}=x^3-3x^{2}\sqrt{y}+3xy-y\sqrt{y}=(x-\sqrt{y})^3 \\ \therefore \sqrt[3]{a-\sqrt{b}}=a-\sqrt{b}


Now we have 99 70 2 3 = x y , 99 + 70 2 3 = x + y . \sqrt[3]{99-70\sqrt{2}}=x-\sqrt{y},\sqrt[3]{99+70\sqrt{2}}=x+\sqrt{y}. Multiply both the equations to get, x 2 y = 9 9 2 7 0 2 2 3 = 9801 9800 3 = 1 3 = 1 y = x 2 1 . ( 1 ) x^2-y=\sqrt[3]{99^2-70^2 \cdot 2}= \sqrt[3]{9801-9800}=\sqrt[3]{1}=1 \\ \therefore y=x^2-1 \ldots. (1) Now cube our original equation to get 99 70 2 = x 3 + 3 x y y y 3 x 2 y 99-70\sqrt{2}=x^3+3xy-y\sqrt{y}-3x^2 \sqrt{y} Equating rational parts we get 99 = x 3 + 3 x y 99=x^3+3xy .Then by equation ( 1 ) (1) ,we have 99 = x 3 + 3 x ( x 2 1 ) x ( 4 x 2 3 ) = 99 99=x^3+3x(x^2-1) \implies x(4x^2-3)=99 By trial we find x = 3 x=3 .By x x ,we get y = 8 y=\sqrt{8} . x + y = 11. \therefore \color{#20A900}{\boxed{x+y=11.}}

Let b = 99 70 2 3 b=\sqrt[3]{99-70\sqrt{2}} and a = 99 + 70 2 3 a=\sqrt[3]{99+70\sqrt{2}} . Then, we are going to find a + b a+b and a b ab .

a b = ( 99 + 70 2 ) ( 99 70 2 ) 3 = 9801 9800 3 = 1 ab=\sqrt[3]{(99+70\sqrt{2})(99-70\sqrt{2})}=\sqrt[3]{9801-9800}=1

Now let x = a + b x=a+b , we know that x R x \in \mathbb{R} , so let's cube both sides:

x 3 = a 3 + b 3 + 3 a b ( a + b ) x^3=a^3+b^3+3ab(a+b)

x 3 = 99 + 70 2 + 99 70 2 + 3 ( 1 ) x x^3=99+70\sqrt{2}+99-70\sqrt{2}+3(1)x

x 3 = 3 x + 198 x 3 3 x 198 = 0 x^3=3x+198 \implies x^3-3x-198=0

By the rational root test we find that the only real root is x = 6 x=6 , so a + b = 6 a+b=6 .

Finally, we can find a b a-b knowing that a b > 0 a-b>0 :

a b = ( a + b ) 2 4 a b = 6 2 4 ( 1 ) = 4 2 a-b=\sqrt{(a+b)^2-4ab}=\sqrt{6^2-4(1)}=4\sqrt{2}

Then, b = ( a + b ) ( a b ) 2 = 6 4 2 2 = 3 2 2 = 3 8 b=\dfrac{(a+b)-(a-b)}{2}=\dfrac{6-4\sqrt{2}}{2}=\boxed{3-2\sqrt{2}}=3-\sqrt{8}

Comparing we get x = 3 x=3 and y = 8 y=8 , so the final answer is x + y = 11 x+y=\boxed{11} .

We can try two thing 2 and 8 for y because it can't be any thing else

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...