A calculus problem by Dylan Scupin-Dursema

Calculus Level 2


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Dec 1, 2016

Dividing each term by x 7 x^7 gives lim x 8 x 7 x 7 + 4 x x 7 + 3 x 7 4 x 7 x 7 + 444 x x 7 + 21 x 7 = lim x 8 + 4 x 6 + 3 x 7 4 + 444 x 6 + 21 x 7 \lim_{x\rightarrow \infty} \dfrac{\frac{8x^7}{x^7} + \frac{4x}{x^7} + \frac{3}{x^7}}{\frac{4x^7}{x^7} + \frac{444x}{x^7} + \frac{21}{x^7}} = \lim_{x\rightarrow \infty} \dfrac{8 + \frac{4}{x^6} + \frac{3}{x^7}}{4 + \frac{444}{x^6} + \frac{21}{x^7}} So since lim x 1 x 6 = lim x 1 x 7 = 0 {\color{#20A900}\lim_{x\rightarrow \infty} \dfrac{1}{x^6}} = {\color{#3D99F6}\lim_{x\rightarrow \infty} \dfrac{1}{x^7}} = 0 this implies lim x 8 + 4 x 6 + 3 x 7 4 + 444 x 6 + 21 x 7 = lim x 8 + lim x 4 x 6 + lim x 3 x 7 lim x 4 + lim x 444 x 6 + lim x 21 x 7 = 8 + 4 lim x 1 x 6 + 3 lim x 1 x 7 4 + 444 lim x 1 x 6 + 21 lim x 1 x 7 = 8 4 = 2 \begin{array}{rl} \lim_{x\rightarrow \infty} \dfrac{8 + \frac{4}{x^6} + \frac{3}{x^7}}{4 + \frac{444}{x^6} + \frac{21}{x^7}} &= \dfrac{\lim_{x\rightarrow \infty} 8 + \lim_{x\rightarrow \infty} \frac{4}{x^6} + \lim_{x\rightarrow \infty} \frac{3}{x^7}}{\lim_{x\rightarrow \infty} 4 + \lim_{x\rightarrow \infty} \frac{444}{x^6} + \lim_{x\rightarrow \infty} \frac{21}{x^7}}\\ &= \dfrac{8 + 4\cdot{\color{#20A900}\lim_{x\rightarrow \infty} \frac{1}{x^6}} + 3\cdot {\color{#3D99F6}\lim_{x\rightarrow \infty} \frac{1}{x^7}}}{4 + 444 \cdot {\color{#20A900}\lim_{x\rightarrow \infty} \frac{1}{x^6}} + 21\cdot {\color{#3D99F6}\lim_{x\rightarrow \infty} \frac{1}{x^7}}}\\ &= \dfrac{8}{4} = \boxed{2} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...