Super Quadratic!

Algebra Level 4

If, for a positive integer n n , the quadratic equation,

x ( x + 1 ) + ( x + 1 ) ( x + 2 ) + + ( x + ( n 1 ) ) ( x + n ) = 10 n x(x+1)+(x+1)(x+2)+ \cdots +(x+(n-1))(x+n) = 10n

has two integral solutions, find n n .

10 9 12 11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x ( x + 2 ) + ( x + 1 ) ( x + 2 ) + + ( x + ( n 1 ) ) ( x + n ) = 10 n k = 1 n ( x + ( k 1 ) ) ( x + k ) = 10 n k = 1 n ( x 2 + ( 2 k 1 ) x + k 2 k ) = 10 n n x 2 + ( n ( n + 1 ) n ) x + n ( n + 1 ) ( 2 n + 1 ) 6 n ( n + 1 ) 2 = 10 n Dividing both sides by n x 2 + n x + ( n + 1 ) ( 2 n + 1 ) 6 n + 1 2 = 10 x 2 + n x + ( n + 1 ) ( 2 n + 1 3 ) 6 = 10 x 2 + n x + ( n + 1 ) ( n 1 ) 3 = 10 x 2 + n x + n 2 1 3 10 = 0 \begin{aligned} x(x+2)+(x+1)(x+2)+\cdots +(x+(n-1))(x+n) & = 10n \\ \implies \sum_{k=1}^n (x+(k-1))(x+k) & = 10n \\ \sum_{k=1}^n \left(x^2+(2k-1)x+k^2 -k \right) & = 10n \\ nx^2+(n(n+1)-n)x+\frac {n(n+1)(2n+1)}6 - \frac {n(n+1)}2 & = 10n & \small \color{#3D99F6} \text{Dividing both sides by }n \\ x^2+nx+\frac {(n+1)(2n+1)}6 - \frac {n+1}2 & = 10 \\ x^2+nx+\frac {(n+1)(2n+1-3)}6 & = 10 \\ x^2+nx+\frac {(n+1)(n-1)}3 & = 10 \\ x^2+nx+\frac {n^2-1}3 - 10 & = 0 \end{aligned}

x = n ± n 2 4 ( n 2 1 ) 3 + 40 2 = n ± 4 n 2 3 + 40 2 \begin{aligned} \implies x & = \frac {-n \pm \sqrt{n^2 -\frac {4(n^2-1)}3+40}}2 = \frac {-n \pm \sqrt{\frac {4 - n^2}3+40}}2 \end{aligned}

We note that 4 n 2 3 + 40 \sqrt{\frac {4 - n^2}3+40} is real for 1 n 11 1 \le n \le 11 and for x x to be an integer, 4 n 2 3 + 40 \dfrac {4-n^2}3+40 must be a perfect square. Let m 2 = 4 n 2 3 + 40 m^2 = \dfrac {4-n^2}3+40 , where m m is a positive integer. We note that m 2 < 40 m^2<40 and they are 36, 25, 16...; n = 3 ( 40 m 2 ) + 4 n= \sqrt{3(40-m^2)+4} ; the roots are n + m 2 , n m 2 \dfrac {-n+m}2, \dfrac {-n-m}2 and integral roots occur when:

\(\begin{array} {} m^2=36 & \implies n = 4 & \implies x = -5, 1 \\ m^2=25 & \implies n = 7 & \implies x = -6, -1 \\ m^2=1 & \implies n = 11 & \implies x = -6, -5 \end{array} \)

Therefore, the answer is 11 \boxed{11} .

How is root equal to -n+m/2 and -n-m/2??

Om Agarwal - 4 years, 2 months ago

OK I got it

Om Agarwal - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...