Supersized Sums

Algebra Level 3

A = r = 0 2016 ( 6 r 2 ) 201 6 2 2016 ( 201 6 2 + 1 ) 2 ( 2015 × 2017 ) 2 \large A=\dfrac{\displaystyle \sum^{2016}_{r=0}(6r^{2})-2016^{2}-2016}{(2016^{2}+1)^{2}-(2015\times 2017)^{2}}

Find the value of A A as defined above.


The answer is 1008.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Sum of n, n², or n³

A = r = 0 2016 ( 6 r 2 ) 201 6 2 2016 ( 201 6 2 + 1 ) 2 ( 2015 × 2017 ) 2 A=\dfrac{\displaystyle \sum^{2016}_{r=0}(6r^{2})-2016^{2}-2016}{(2016^{2}+1)^{2}-(2015\times 2017)^{2}}

A = 6 ( 1 2 + 2 2 + 3 2 + . . . + 201 6 2 ) 201 6 2 2016 ( 201 6 2 + 1 ) 2 ( 2015 × 2017 ) 2 A=\dfrac{6(\color{#D61F06}{1^2+2^2+3^2+...+2016^2})-2016^2-2016}{(2016^2+1)^2-(2015×2017)^2}

Let a = 2016 a=2016 .

A = 6 ( a × ( a + 1 ) × ( 2 a + 1 ) 6 ) a 2 a ( a 2 + 1 ) 2 [ ( a 1 ) ( a + 1 ) ] 2 A=\dfrac{6\left(\color{#D61F06}{\frac{a×(a+1)×(2a+1)}{6}}\right)-a^2-a}{(a^2+1)^2 -[(a-1)(a+1)]^2}

A = 2 a 3 + 3 a 2 + a a 2 a a 4 + 1 + 2 a 2 a 4 1 + 2 a 4 A=\dfrac{2a^3+3a^2+a-a^2-a}{a^4+1+2a^2-a^4-1+2a^4}

A = 2 a 2 ( a + 1 ) 4 a 2 A=\dfrac{2a^2(a+1)}{4a^2}

A = a + 1 2 A=\dfrac{a+1}{2}

A = 2016 + 1 2 = 1008.5 \therefore A=\dfrac{2016+1}{2}=\boxed{1008.5}

Chew-Seong Cheong
Sep 25, 2016

Same solution as @William Whitehouse 's presented as follows.

Let n = 2016 n=2016 , then we have:

A = 6 r = 0 n r 2 n 2 n ( n 2 + 1 ) 2 ( n 1 ) 2 ( n + 1 ) 2 = 6 n ( n + 1 ) ( 2 n + 1 ) 6 n ( n + 1 ) ( n 2 + 1 ) 2 ( n 2 1 ) 2 = n ( n + 1 ) ( 2 n + 1 1 ) n 4 + 2 n 2 + 1 ( n 4 2 n 2 + 1 ) = 2 n 2 ( n + 1 ) 4 n 2 = n + 1 2 Putting back n = 2016 = 2016 + 1 2 = 1008.5 \begin{aligned} A & = \frac {\displaystyle 6 \sum_{r=0}^n r^2 - n^2 -n}{(n^2+1)^2-(n-1)^2(n+1)^2} \\ & = \frac {6\frac{n(n+1)(2n+1)}6 - n(n+1)}{(n^2+1)^2-(n^2-1)^2} \\ & = \frac {n(n+1)(2n+1-1)}{n^4+2n^2+1-(n^4-2n^2+1)} \\ & = \frac {2n^2(n+1)}{4n^2} \\ & = \frac {n+1}2 & \small \color{#3D99F6}{\text{Putting back }n = 2016} \\ & = \frac {2016+1}2 = \boxed{1008.5} \end{aligned}

Let n=2016. We now have n ( n + 1 ) ( 2 n + 1 ) ( n 2 + n ) ( n 2 + 1 ) 2 ( ( n 1 ) ( n + 1 ) ) 2 \frac{n(n+1)(2n+1)-(n^{2}+n)}{(n^{2}+1)^{2}-((n-1)(n+1))^2} .

The top clearly resolves to 2 n 2 ( n + 1 ) 2n^{2}(n+1) and the bottom becomes ( n 2 + 1 ) 2 ( n 2 1 ) 2 = 4 n 2 (n^{2}+1)^{2}-(n^2-1)^{2} = 4n^{2} this simplifies to n + 1 2 \frac{n+1}{2} which is 2017 2 = 1008.5 \frac{2017}{2} = \underline{1008.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...