Surd Problem 2

Algebra Level 5

x x , y y and z z are rational numbers such that

2 3 1 3 = x 3 + y 3 + z 3 \sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}

If x + y + z x+y+z can be expressed as m n \dfrac{m}{n} , where m m and n n are relatively prime positive integers,

find m + n m+n .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hugh Sir
Nov 26, 2014

Let p = 2 3 1 3 p = \sqrt[3]{\sqrt[3]{2}-1} and q = 2 3 q = \sqrt[3]{2} .

Then q 3 = 2 q^{3} = 2 and p = q 1 3 p = \sqrt[3]{q-1} .

Note that 1 = q 3 1 = ( q 1 ) ( q 2 + q + 1 ) 1 = q^{3}-1 = (q-1)(q^{2}+q+1) ,

and q 2 + q + 1 = 3 q 2 + 3 q + 2 + 1 3 = q 3 + 3 q 2 + 3 q + 1 3 = ( q + 1 ) 3 3 q^{2}+q+1 = \frac{3q^{2}+3q+2+1}{3} = \frac{q^{3}+3q^{2}+3q+1}{3} = \frac{(q+1)^{3}}{3} .

Then p 3 = q 1 = 1 q 2 + q + 1 = 3 ( q + 1 ) 3 p^{3} = q-1 = \frac{1}{q^{2}+q+1} = \frac{3}{(q+1)^{3}} .

So p = 3 3 q + 1 p = \frac{\sqrt[3]{3}}{q+1} .

On the other hand, 3 = q 3 + 1 = ( q + 1 ) ( q 2 q + 1 ) 3 = q^{3}+1 = (q+1)(q^{2}-q+1) .

Then 1 q + 1 = q 2 q + 1 3 = 4 3 2 3 + 1 3 \frac{1}{q+1} = \frac{q^{2}-q+1}{3} = \frac{\sqrt[3]{4}-\sqrt[3]{2}+1}{3} .

So p = 3 3 q + 1 = 3 3 3 ( 4 3 2 3 + 1 ) = 1 9 3 ( 4 3 + 2 3 + 1 ) p = \frac{\sqrt[3]{3}}{q+1} = \frac{\sqrt[3]{3}}{3}(\sqrt[3]{4}-\sqrt[3]{2}+1) = \sqrt[3]{\frac{1}{9}}(\sqrt[3]{4}+\sqrt[3]{-2}+1) .

Hence, 2 3 1 3 = 4 9 3 + 2 9 3 + 1 9 3 = x 3 + y 3 + z 3 \sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{\frac{4}{9}}+\sqrt[3]{-\frac{2}{9}}+\sqrt[3]{\frac{1}{9}} = \sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z} .

x + y + z = 4 9 2 9 + 1 9 = 1 3 = m n x+y+z = \frac{4}{9}-\frac{2}{9}+\frac{1}{9} = \frac{1}{3} = \frac{m}{n} .

Consequently, m + n = 1 + 3 = 4 m+n = 1+3 = 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...