Surds My God!

Algebra Level 4

6 + 2 3 33 19 3 \large \frac{\sqrt{6+2\sqrt3}}{\sqrt{33-19\sqrt3}}

If the value of the radical expression above equals to a + b 3 a+ b \sqrt 3 for integers a a and b b , find the value of a + b a+b .

6 None of these choices 12 10 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Apr 30, 2015

6 + 2 3 33 19 3 = 6 + 2 3 33 19 3 = ( 6 + 2 3 ) ( 33 + 19 3 ) ( 33 19 3 ) ( 33 + 19 3 ) = 198 + 114 3 + 66 3 + 38 ( 3 ) 3 3 2 ( 19 3 ) 2 = 198 + 114 + 180 3 1089 1083 = 312 + 180 3 6 = 52 + 30 3 = 25 + 27 + 2 ( 5 ) ( 3 3 ) = 25 + 2 ( 5 ) ( 3 3 ) + 27 = 5 2 + 2 ( 5 ) ( 3 3 ) + ( 3 3 ) 2 = ( 5 + 3 3 ) 2 = 5 + 3 3 \begin{aligned}\dfrac{\sqrt{6+2\sqrt{3}}}{\sqrt{33-19\sqrt{3}}}=&\sqrt{\dfrac{6+2\sqrt{3}}{33-19\sqrt{3}}}\\=&\sqrt{\dfrac{(6+2\sqrt{3})\color{#624F41}{(33+19\sqrt{3})}}{(33-19\sqrt{3})\color{#624F41}{(33+19\sqrt{3})}}}\\=&\sqrt{\dfrac{198+114\sqrt{3}+66\sqrt{3}+38(3)}{33^2-(19\sqrt{3})^2}}\\=&\sqrt{\dfrac{198+114+180\sqrt{3}}{1089-1083}} \\=&\sqrt{\dfrac{312+180\sqrt{3}}{6}} \\=&\sqrt{\color{#D61F06}{52}+\color{#3D99F6}{30\sqrt{3}}} \\=&\sqrt{\color{#D61F06}{25+27}+\color{#3D99F6}{2(5)(3\sqrt{3})}}\\=&\sqrt{\color{#20A900}{25}+2(5)(3\sqrt{3})+\color{magenta}{27}} \\=&\sqrt{\color{#20A900}{5^2}+2(\color{#20A900}{5})(\color{magenta}{3\sqrt{3}})+\color{magenta}{(3\sqrt{3})^2}}\\ =&\sqrt{(\color{#20A900}{5}+\color{magenta}{3\sqrt{3}})^2}\\ =&\ \color{#20A900}{5}+\color{magenta}{3}\sqrt{3} \end{aligned}

Therefore, a = 5 , b = 3 , a + b = 5 + 3 = 8 a=\color{#20A900}{5}, b=\color{magenta}{3}, a+b=\color{#20A900}{5}+\color{magenta}{3}=\boxed{8}

nice answer firstly i didnt get this question but now it seems easy .thanks

Harshi Singh - 6 years, 1 month ago

Did the same way....nyc solution

Apoorv Singhal - 6 years ago

6 + 2 3 33 19 3 = 2 3 + 2 11 3 19 = ( 2 3 + 2 ) ( 11 3 + 19 ) ( 11 3 19 ) ( 11 3 + 19 ) = 52 + 30 3 = a + b 3 52 + 30 3 = a 2 + 3 b 2 + 2 a b 3 . a b = 15 = 5 3 , a n d a 2 + 3 b 2 = 52 S o a = 5 , a n d b = 3. a + b = 8. \dfrac{\sqrt{6+2\sqrt{3}}}{\sqrt{33-19\sqrt{3}}}\\ =\dfrac{\sqrt{2\sqrt{3}+2}}{\sqrt{11\sqrt{3} -19}} \\ =\sqrt{ \dfrac {(2\sqrt{3}+2)(11\sqrt{3} +19) } {(11\sqrt{3} -19)(11\sqrt{3} +19) } } \\ =\sqrt{ 52+30\sqrt{3} }~= ~a+b\sqrt{3} \\ \therefore~~52+30\sqrt3=a^2+3b^2+2ab\sqrt3.\\ \implies~~ ab=15=5*3,~~~~~and~~~~a^2+3b^2=52\\ So~a=5,~~and~~b=3.\\ a+b=\color{#D61F06}{8}.\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...