Surd Problem 1

Algebra Level 4

If a a and b b are non-zero real numbers satisfying the equation

( a + a 2 + 1 ) ( b + b 2 + 1 ) = 1 (a+\sqrt{a^{2}+1})(b+\sqrt{b^{2}+1})=1 ,

find a b \dfrac{a}{b} .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hugh Sir
Nov 25, 2014

a + a 2 + 1 = 1 b + b 2 + 1 = 1 b + b 2 + 1 × b b 2 + 1 b b 2 + 1 = b 2 + 1 b a+\sqrt{a^{2}+1} = \frac{1}{b+\sqrt{b^{2}+1}} = \frac{1}{b+\sqrt{b^{2}+1}} \times \frac{b-\sqrt{b^{2}+1}}{b-\sqrt{b^{2}+1}} = \sqrt{b^{2}+1}-b

a + b = b 2 + 1 a 2 + 1 _ _ _ _ _ _ _ _ ( 1 ) a+b = \sqrt{b^{2}+1}-\sqrt{a^{2}+1} \_\_\_\_\_\_\_\_(1)

Similarly,

b + b 2 + 1 = 1 a + a 2 + 1 = a 2 + 1 a b+\sqrt{b^{2}+1} = \frac{1}{a+\sqrt{a^{2}+1}} = \sqrt{a^{2}+1}-a

a + b = a 2 + 1 b 2 + 1 _ _ _ _ _ _ _ _ ( 2 ) a+b = \sqrt{a^{2}+1}-\sqrt{b^{2}+1} \_\_\_\_\_\_\_\_(2)

So ( 1 ) = ( 2 ) (1) = (2) ,

b 2 + 1 a 2 + 1 = a 2 + 1 b 2 + 1 \sqrt{b^{2}+1}-\sqrt{a^{2}+1} = \sqrt{a^{2}+1}-\sqrt{b^{2}+1}

a 2 + 1 = b 2 + 1 \sqrt{a^{2}+1} = \sqrt{b^{2}+1}

a 2 = b 2 a^{2} = b^{2}

a = b a = b or a = b a = -b

If a = b a = b , then from ( 1 ) (1) we have

2 a = a 2 + 1 a 2 + 1 = 0 2a = \sqrt{a^{2}+1}-\sqrt{a^{2}+1} = 0

a = b = 0 a = b = 0 , which is contradicted to the given condition, a a and b b are non-zero.

Therefore, a = b a = -b ; and a b = 1 \frac{a}{b} = -1 .

Nice question to warm yourself up before tackling harder ones, don't you think so too , sir ?

A Former Brilliant Member - 6 years, 5 months ago
Aareyan Manzoor
Jan 11, 2015

let a + a 2 + 1 = x , b + b 2 + 1 = 1 x a+\sqrt{a^2+1}=x, b+\sqrt{b^2+1}=\dfrac{1}{x} now solve for a in terms of x a 2 + 1 = x a a 2 + 1 = a 2 2 a x + x 2 \sqrt{a^2+1}=x-a\longrightarrow a^2+1=a^2 -2ax+x^2 2 a x = x 2 1 a = x 2 1 2 x 2ax=x^2-1\longrightarrow a=\dfrac{x^2-1}{2x} solve for b in terms of x b 2 + 1 = 1 x b b 2 + 1 = b 2 2 b x + 1 x 2 \sqrt{b^2+1}=\dfrac{1}{x}-b\longrightarrow b^2 +1=b^2 -\dfrac{2b}{x}+\dfrac{1}{x^2} 2 b x = 1 x 2 1 = 1 x 2 x 2 \dfrac{2b}{x}=\dfrac{1}{x^2}-1=\dfrac{1-x^2}{x^2} b = 1 x 2 2 x b=\dfrac{1-x^2}{2x} now notice 1 x 2 2 x = x 2 1 2 x b = a \dfrac{1-x^2}{2x}=-\dfrac{x^2-1}{2x}\longrightarrow b=-a now, a b = a a = 1 \dfrac{a}{b}=\dfrac{a}{-a}=\boxed{-1}

Nice, One!!

Bhargav Upadhyay - 6 years, 5 months ago
Incredible Mind
Jan 6, 2015

u can also make sub. a=tanx ,b=tany .If u put t in eqn u end up with

sin((x+y)/2)=0 implies x=2npi-y.Therefore a/b=tanx/tany=tanx/-tanx = -1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...