Sure.. square both sides..

Algebra Level 3

Solve for x x in the following equation: x + x x x = 2 x x + x \sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=2\sqrt{\dfrac{x}{x+\sqrt{x}}}

Where x x is a positive real number.


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x + x x x = 2 x x + x Multiply both sides by x + x x + x x 2 x = 2 x x x = x 2 x Squaring both sides x 2 2 x x + x = x 2 x 2 x x + x = x Rearranging x ( 1 x ) = 0 \begin{aligned} \sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}} & = 2 \sqrt{\dfrac {x}{x+\sqrt{x}}} & \small \color{#3D99F6} \text{Multiply both sides by }\sqrt{x+\sqrt x} \\ x + \sqrt x - \sqrt{x^2-x} & = 2\sqrt x \\ x - \sqrt x & = \sqrt{x^2 - x} & \small \color{#3D99F6} \text{Squaring both sides} \\ x^2 - 2x\sqrt x + x & = x^2 - x \\ - 2x \sqrt x + x & = -x & \small \color{#3D99F6} \text{Rearranging} \\ x(1-\sqrt x) & = 0 \end{aligned}

x = { 0 LHS: 2 x x + x is undefined. 1 x = 0 x = 1 \implies x = \begin{cases} 0 & \text{LHS: } 2\sqrt{\dfrac x{x+\sqrt x}} \text{ is undefined.} \\ 1 - \sqrt x = 0 & \implies x = \boxed 1 \end{cases}

In the 3rd line it should be x + x x 2 x = 2 x \Rightarrow x + \sqrt{x} - \sqrt{x^{2} - x} = 2\sqrt{x} x x = x 2 x \Rightarrow x - \sqrt{x} = \sqrt{x^{2} - x}

Krutarth Patel - 2 years, 4 months ago

Log in to reply

I have changed the solution.

Chew-Seong Cheong - 2 years, 4 months ago
Ramiel To-ong
Sep 11, 2015

same analysis

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...