Surface Charge on Conducting Sphere

A conducting sphere of radius R R with a layer of charge Q Q distributed on its surface has the electric potential everywhere in space:

V = { 1 4 π ϵ 0 Q R 2 r 3 sin θ cos θ cos ϕ , r > R 1 4 π ϵ 0 Q r 2 R 3 sin θ cos θ cos ϕ , r < R . V = \begin{cases} \dfrac{1}{4\pi \epsilon_0} \dfrac{QR^2}{r^3} \sin \theta \cos \theta \cos \phi, \ \ r>R \\ \dfrac{1}{4\pi \epsilon_0} \dfrac{Qr^2}{R^3} \sin \theta \cos \theta \cos \phi, \ \ r<R. \end{cases}

Which of the following gives the surface charge density on the surface of the sphere?


Note: Recall that the change in electric field across either side of a conductor is equal to σ ϵ 0 , \frac{\sigma}{\epsilon_0}, where σ \sigma is the surface charge density.

Q 4 π R 2 sin θ cos θ cos ϕ -\frac{Q}{4\pi R^2} \sin \theta \cos \theta \cos \phi Q 4 π R 2 sin θ cos θ cos ϕ \frac{Q}{4\pi R^2} \sin \theta \cos \theta \cos \phi Q 4 π R 2 3 sin θ cos θ cos ϕ \frac{Q}{4\pi R^2} 3 \sin \theta \cos \theta \cos \phi Q 4 π R 2 5 sin θ cos θ cos ϕ \frac{Q}{4\pi R^2} 5 \sin \theta \cos \theta \cos \phi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matt DeCross
May 10, 2016

One can use spherical harmonics for this problem, but it is overkill. Simply apply E = ϕ E = -\nabla \phi using spherical symmetry and the hint. The electric field is thus:

E = { 3 4 π ϵ 0 Q R 2 r 4 sin θ cos θ cos ϕ , r > R 1 2 π ϵ 0 Q r R 3 sin θ cos θ cos ϕ , r < R . E = \begin{cases} \dfrac{3}{4\pi \epsilon_0} \dfrac{QR^2}{r^4} \sin \theta \cos \theta \cos \phi, \qquad &r>R \\ \dfrac{-1}{2\pi \epsilon_0} \dfrac{Qr}{R^3} \sin \theta \cos \theta \cos \phi, \qquad &r<R \end{cases}.

The difference on either side of r = R r=R is:

σ ϵ 0 = 3 4 π ϵ 0 Q R 2 R 4 sin θ cos θ cos ϕ + 1 2 π ϵ 0 Q R R 3 sin θ cos θ cos ϕ = Q 4 π R 2 ϵ 0 5 sin θ cos θ cos ϕ . \frac{\sigma}{\epsilon_0} = \dfrac{3}{4\pi \epsilon_0} \dfrac{QR^2}{R^4} \sin \theta \cos \theta \cos \phi + \dfrac{1}{2\pi \epsilon_0} \dfrac{QR}{R^3} \sin \theta \cos \theta \cos \phi = \frac{Q}{4\pi R^2 \epsilon_0} 5 \sin \theta \cos \theta \cos \phi .

Multilying both sides by ϵ 0 \epsilon_0 gives the answer.

Aryan Goyat
Apr 23, 2016

it would have been a master piece if you would have not given "THE HINT".

Very true! it was a kind of hard to think of this !

Prakhar Bindal - 5 years, 1 month ago

Exactly.😀😁

rajdeep brahma - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...