Surface Integral 2

Calculus Level 4

Evaluate I = Ω x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 / 2 , I=\iint_\Omega\frac{x\,dydz+y\,dzdx+z\,dxdy}{\left(x^2+y^2+z^2\right)^{3/2}}, where Ω \Omega denotes ellipsoid x 2 4 + y 2 π 2 + z 2 e 2 = 1 \frac{x^2}{4}+\frac{y^2}{\pi^2}+\frac{z^2}{e^2}=1 with normals pointing outward.


The answer is 12.57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 6, 2018

The general vector surface area element d S d\mathbf{S} can be written in components as ( d y d z , d x d z , d x d y ) (dy\,dz,dx\,dz,dx\,dy) , and so the integral is I = Ω x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = Ω r r 3 d S = Ω 1 r d S I \; =\; \iint_\Omega \frac{x\,dydz + y\,dzdx + z\,dxdy}{(x^2 + y^2 + z^2)^{\frac32}} \; = \; \iint_\Omega \frac{\mathbf{r}}{r^3}\,d\mathbf{S} \; = \; -\iint_\Omega \nabla \tfrac{1}{r}\,d\mathbf{S} Since r 1 r^{-1} is Harmonic on R 3 \ { 0 } \mathbb{R}^3 \backslash\{\mathbf{0}\} , Green's Theorem tells us that I = C ϵ 1 r d S I \; = \; -\iint_{C_\epsilon} \nabla \tfrac{1}{r}\,d\mathbf{S} where C ϵ C_\epsilon is the sphere with radius ϵ \epsilon centred at the origin, and hence I = C ϵ d S r 2 = C ϵ ϵ 2 d Ω ϵ 2 = 4 π I \; = \; \iint_{C_\epsilon} \frac{dS}{r^2} \; = \; \iint_{C_\epsilon} \frac{\epsilon^2\,d\Omega}{\epsilon^2} \; = \; \boxed{4\pi} where the final integral d Ω d\Omega is with respect to solid angle.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...