Surface Integral of a Vector Field

Calculus Level 4

Define the region B : = { ( x , y , z ) : y + x 2 + y 2 1 z y } B := \{ (x, y, z) : y + x^2 + y^2 - 1 \le z \le y \} and define the vector field

F = ( x , 0 , y z ) \vec{F} = (-x, 0, y-z)

Find B F d S \displaystyle \int_{\partial B } \vec{F} \cdot d\vec{S}

Here, B \partial B is the boundary of region B B (i.e. its surface), and d S d\vec{S} is a surface area differential pointing outward of the specified region at any point on the surface.

π \pi π 2 -\dfrac{ \pi }{2} π 2 \dfrac{ \pi }{2} π - \pi 1 1 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Dec 24, 2020

Region B is the bounded by

Paraboloid:

z = y + x 2 + y 2 1 z = y + x^2 + y^2 -1

and

Plane

z = y z = y

We'll integrate over both surfaces,

B F d S = B 1 F d S + B 2 F d S \displaystyle \int_{\partial B} \vec{F} \cdot \vec{dS} = \int_{\partial B_1} \vec{F} \cdot \vec{dS} + \int_{\partial B_2} \vec{F} \cdot \vec{dS}

where B 1 \partial B_1 denotes the surface of the paraboloid and B 2 \partial B_2 is the surface of the plane.

The paraboloid can parameterized in cylindrical coordinates as

p = ( r cos t , r sin t , r 2 + r sin t 1 ) p = (r \cos t , r \sin t, r^2 + r \sin t - 1 )

Since z y z \le y , then r 2 1 r^2 \le 1

F = ( x , 0 , y z ) = ( r cos t , 0 , 1 r 2 ) \vec{F} = (- x, 0, y - z) = (- r \cos t, 0, 1 - r^2 )

Now the area differential d S = ± p t × p r d t d r \vec{dS} = \pm p_t \times p_r \hspace{4pt}dt \hspace{4pt} dr

p t = ( r sin t , r cos t , r cos t ) p_t = (- r \sin t, r \cos t, r \cos t )

p r = ( cos t , sin t , 2 r + sin t ) p_r = ( \cos t, \sin t, 2 r + \sin t )

so that

p t × p r = ( 2 r 2 cos t , 2 r 2 sin t + r , r ) p_t \times p_r = ( 2 r^2 \cos t , 2 r^2 \sin t + r , - r )

since ( r ) (-r) is negative , this the right direction for an outward normal.

B 1 F d S = t = 0 2 π r = 0 1 ( r cos t , 0 , 1 r 2 ) ( 2 r 2 cos t , 2 r 2 sin t + r , r ) d r d t \displaystyle \int_{\partial B_1} \vec{F} \cdot dS = \int_{t = 0 }^{2 \pi} \int_{r = 0 }^{1} (- r \cos t, 0, 1 - r^2 ) \cdot ( 2 r^2 \cos t , 2 r^2 \sin t + r , - r ) \hspace{4pt}dr \hspace{4pt} dt

= t = 0 2 π r = 0 1 2 r 3 cos 2 t + r 3 r d r d t = t = 0 2 π r = 0 1 r 3 cos 2 t r d r d t = \displaystyle \int_{t = 0 }^{2 \pi} \int_{r = 0 }^{1} - 2 r^3 \cos^2 t + r^3 - r dr dt = \int_{t = 0 }^{2 \pi} \int_{r = 0 }^{1} - r^3 \cos 2 t - r dr dt

Flipping the order of integration by integrating with respect to t t first, the first term vanishes, and the integral becomes

= 2 π r = 0 1 r d r d t = 2 π ( 1 2 ) = π = \displaystyle {2 \pi} \int_{r = 0 }^{1} - r dr dt = { 2 \pi } (- \dfrac{1}{2} ) = - \pi

For the second integral (over the plane z= y ) , the parameterization of the plane z = y z = y is by taking two mutually orthogonal unit vectors that are

normal to the normal of the plane which is ( 0 , 1 , 1 ) (0, 1, -1) , so we can choose u 1 = ( 1 , 0 , 0 ) u_1 = (1, 0, 0) , and u 2 = ( 0 , 1 , 1 ) / 2 u_2 = (0, 1, 1) / \sqrt{2}

hence a point on the plane is p = u ( 1 , 0 , 0 ) + v ( 0 , 1 , 1 ) / s q r t ( 2 ) = ( u , v / 2 , v / 2 ) p = u (1, 0, 0) + v (0, 1, 1)/sqrt(2) = (u , v / \sqrt{2} , v / \sqrt{2} )

Now we can impose the condition that r 2 = x 2 + y 2 < = 1 r^2 = x^2 + y^2 <= 1 , so that u 2 + 1 / 2 v 2 < = 1 u^2 + 1/2 v^2 <= 1 , which is a region bounded by an ellipse, so we'll take u = s cos t , v = 2 s sin t u = s \cos t , v = \sqrt{2} s \sin t

, so that p = ( s cos t , s sin t , s sin t ) p = ( s \cos t, s \sin t, s \sin t ) , where t [ 0 , 2 π ] t \in [0, 2 \pi ] , and s [ 0 , 1 ] s \in [0, 1] .

Now , with this parameterizaton, F = ( x , 0 , y z ) = ( s cos t , 0 , 0 ) \vec{F} = ( - x, 0, y-z) = (- s \cos t, 0, 0 )

Since the normal to the plane is along the vector ( 0 , 1 , 1 ) ( 0, 1, -1) , then d S \vec{dS} is perpendicular to F \vec{F} and hence the second integral is zero.

The final answer is therefore,

B F d S = π \displaystyle \int_{\partial B} \vec{F} \cdot \vec{dS} = - \pi

A final note, it is possible to solve this problem using the divergence theorem, which states that

B F d S = B div F d V \displaystyle \int_{\partial B} \vec{F} \cdot \vec{dS} = \int_B \text{div} \vec{F} dV

we have div F = F x x + F y y + F z z = ( 1 ) + 0 + ( 1 ) = 2 \text{div} \vec{F} = \dfrac{\partial F_x }{\partial x} + \dfrac{\partial F_y}{\partial y} + \dfrac{\partial F_z}{\partial z} = (-1) + 0 + (-1) = -2

Hence,

B F d S = 2 V \displaystyle \int_{\partial B} \vec{F} \cdot \vec{dS} = -2 V

where V V is the volume of region B B , the volume can found as follows:

Recall that a point on the paraboloid surface is,

p = ( r cos t , r sin t , r 2 + r sin t 1 ) p = (r \cos t , r \sin t, r^2 + r \sin t - 1 )

For cylindrical coordinates, the jacobian is J = r | J | = r .

Therefore,

V = t = 0 2 π r = 0 1 ( 1 r 2 ) r d r d t = 2 π ( 1 2 1 4 ) = π 2 V = \displaystyle \int_{t=0}^{2 \pi} \int_{r = 0 }^{1} (1 - r^2) r dr dt = 2 \pi ( \dfrac{1}{2} - \dfrac{1}{4} ) = \dfrac{\pi}{2}

Hence,

B F d S = B div F d V = 2 ( π 2 ) = π \displaystyle \int_{\partial B} \vec{F} \cdot \vec{dS} = \int_B \text{div} \vec{F} dV = -2 \left(\dfrac{\pi}{2} \right) = - \pi

Brilliant solution sir....i did it the easy way by gauss divergence theorem

Arghyadeep Chatterjee - 5 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...