Surface integral on a sphere

Calculus Level 5

Let A = { ( x , y , z ) R 3 : x 2 + y 2 + z 2 = 1 3 } A = \left\{ (x,y,z) \in \mathbb{R}^3 : x^2+y^2+z^2=\dfrac{1}{3} \right\} .

Evaluate A x y e x + y + z d S = π ( a e + b e ) \iint_A xye^{x+y+z} \,dS = \pi \left( ae+\frac{b}{e} \right) and find 18 a 36 b 18a-36b , where a a and b b are rationals.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Dec 9, 2018

I find it convenient to work on the sphere S S given by x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 . At some point I will perform a change of variables, x + y + z = 3 z ~ x+y+z=\sqrt{3}\tilde{z} (we will not need x ~ \tilde{x} and y ~ \tilde{y} ).

1 9 S x y e ( x + y + z ) / 3 d S = 1 27 S ( x y + x z + y z ) e ( x + y + z ) / 3 d S = 1 54 S ( ( x + y + z ) 2 1 ) e ( x + y + z ) / 3 d S = 1 54 S ( 3 z ~ 2 1 ) e z ~ d S \frac{1}{9}\int_S xye^{(x+y+z)/\sqrt{3}}dS=\frac{1}{27}\int_S (xy+xz+yz)e^{(x+y+z)/\sqrt{3}}dS=\frac{1}{54}\int_S ((x+y+z)^2-1)e^{(x+y+z)/\sqrt{3}}dS=\frac{1}{54}\int_S (3\tilde{z}^2-1)e^{\tilde{z}}dS = 2 π 54 1 1 ( 3 z ~ 2 1 ) e z ~ d z ~ = ( 2 e 27 14 27 e ) π =\frac{2\pi}{54}\int_{-1}^{1}(3\tilde{z}^2-1)e^{\tilde{z}}d\tilde{z}=\left(\frac{2e}{27}-\frac{14}{27e}\right)\pi

The answer comes out to be 20 \boxed{20} .

A wonderful celebration of symmetry on the sphere! Thank you! I will add this to my repertoire of challenging problems for my calculus classes.

Mark Hennings
Dec 9, 2018

We note that J = x 2 + y 2 + z 2 = R 2 x y e x + y + z d S = R x 2 + y 2 + z 2 = R 2 F d S = R x 2 + y 2 + z 2 R 2 F d V = R x 2 + y 2 + z 2 R 2 y e x + y + z d V J \; = \;\iint_{x^2+y^2+z^2=R^2}xye^{x+y+z}\,dS \; = \; R\iint_{x^2+y^2+z^2=R^2}\mathrm{F} \cdot d\mathrm{S} \; = \; R\iiint_{x^2+y^2+z^2 \le R^2}\nabla\cdot\mathrm{F}\,dV \; = \; R\iiint_{x^2+y^2+z^2 \le R^2} ye^{x+y+z}\,dV where F = ( y e x + y + z 0 0 ) \mathrm{F} \; = \; \left(\begin{array}{c} ye^{x+y+z} \\ 0 \\ 0 \end{array}\right) Rotating the coordinate system with the transformation X = 1 3 ( x + y + z ) X = \tfrac{1}{\sqrt{3}}(x+y+z) , Y = 1 2 ( x y ) Y = \tfrac{1}{\sqrt{2}}(x-y) , Z = 1 6 ( x + y 2 z ) Z = \tfrac{1}{\sqrt{6}}(x+y-2z) , we see that J = R X 2 + Y 2 + Z 2 R 2 ( 1 3 X 1 2 Y + 1 6 Z ) e 3 X d X d Y d Z = 1 3 R X 2 + Y 2 + Z 2 R 2 X e 3 X d X d Y d Z J \; = \; R\iiint_{X^2+Y^2+Z^2\le R^2}\big(\tfrac{1}{\sqrt{3}}X - \tfrac{1}{\sqrt{2}}Y + \tfrac{1}{\sqrt{6}}Z\big)e^{\sqrt{3}X}\,dXdYdZ \; = \; \tfrac{1}{\sqrt{3}}R\iiint_{X^2+Y^2+Z^2 \le R^2}Xe^{\sqrt{3}X}\,dXdYdZ by symmetry, and hence J = 1 3 π R R R X ( R 2 X 2 ) e 3 X d X J \; = \; \tfrac{1}{\sqrt{3}}\pi R\int_{-R}^R X(R^2-X^2)e^{\sqrt{3}X}\,dX With R = 1 3 R = \tfrac{1}{\sqrt{3}} this becomes J = 1 3 π 1 3 1 3 X ( 1 3 X 2 ) e 3 X d X = 1 27 π 1 1 y ( 1 y 2 ) e y d y = 1 27 π ( 2 e 14 e 1 ) J \; = \; \tfrac13\pi\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} X\big(\tfrac13-X^2\big)e^{\sqrt{3}X}\,dX \; = \; \tfrac{1}{27}\pi \int_{-1}^1 y(1-y^2)e^y\,dy \; = \; \tfrac{1}{27}\pi\big(2e - 14e^{-1}\big) which makes a = 2 27 a = \tfrac{2}{27} and b 14 27 b - -\tfrac{14}{27} , and hence 18 a 36 b = 20 18a - 36b = \boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...