Let A = { ( x , y , z ) ∈ R 3 : x 2 + y 2 + z 2 = 3 1 } .
Evaluate ∬ A x y e x + y + z d S = π ( a e + e b ) and find 1 8 a − 3 6 b , where a and b are rationals.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We note that J = ∬ x 2 + y 2 + z 2 = R 2 x y e x + y + z d S = R ∬ x 2 + y 2 + z 2 = R 2 F ⋅ d S = R ∭ x 2 + y 2 + z 2 ≤ R 2 ∇ ⋅ F d V = R ∭ x 2 + y 2 + z 2 ≤ R 2 y e x + y + z d V where F = ⎝ ⎛ y e x + y + z 0 0 ⎠ ⎞ Rotating the coordinate system with the transformation X = 3 1 ( x + y + z ) , Y = 2 1 ( x − y ) , Z = 6 1 ( x + y − 2 z ) , we see that J = R ∭ X 2 + Y 2 + Z 2 ≤ R 2 ( 3 1 X − 2 1 Y + 6 1 Z ) e 3 X d X d Y d Z = 3 1 R ∭ X 2 + Y 2 + Z 2 ≤ R 2 X e 3 X d X d Y d Z by symmetry, and hence J = 3 1 π R ∫ − R R X ( R 2 − X 2 ) e 3 X d X With R = 3 1 this becomes J = 3 1 π ∫ − 3 1 3 1 X ( 3 1 − X 2 ) e 3 X d X = 2 7 1 π ∫ − 1 1 y ( 1 − y 2 ) e y d y = 2 7 1 π ( 2 e − 1 4 e − 1 ) which makes a = 2 7 2 and b − − 2 7 1 4 , and hence 1 8 a − 3 6 b = 2 0 .
Problem Loading...
Note Loading...
Set Loading...
I find it convenient to work on the sphere S given by x 2 + y 2 + z 2 = 1 . At some point I will perform a change of variables, x + y + z = 3 z ~ (we will not need x ~ and y ~ ).
9 1 ∫ S x y e ( x + y + z ) / 3 d S = 2 7 1 ∫ S ( x y + x z + y z ) e ( x + y + z ) / 3 d S = 5 4 1 ∫ S ( ( x + y + z ) 2 − 1 ) e ( x + y + z ) / 3 d S = 5 4 1 ∫ S ( 3 z ~ 2 − 1 ) e z ~ d S = 5 4 2 π ∫ − 1 1 ( 3 z ~ 2 − 1 ) e z ~ d z ~ = ( 2 7 2 e − 2 7 e 1 4 ) π
The answer comes out to be 2 0 .
A wonderful celebration of symmetry on the sphere! Thank you! I will add this to my repertoire of challenging problems for my calculus classes.