Surface integral over a discontinuous flux

Calculus Level 5

Find the flux A A over the surface region of the sphere of radius 5, centred in origin, limited by the plans z = 3 z=3 and z = 4 z=-4 , where the field is: F ( x , y , z ) = ( y I , x I + 7 y , 7 z ) F(x,y,z)=\left(\frac{y}{\sqrt{I}},\dfrac{-x}{\sqrt{I}}+7y,-7z\right)

I = ( 4 x 2 + y 2 ) 2 + z 2 {I}=(4-\sqrt{x^{2}+y^{2}})^{2}+z^{2}

For that, do you will need to find the flux over the torus of radius R = 4 R=4 and r = ϵ r=\epsilon , centred in origin, and make the limit:

B = lim ϵ 0 T F ( x , y , z ) n i n ^ d S . \displaystyle B= \lim_{\epsilon \to 0} \int \int_T F(x,y,z)\cdot \hat{n_{in}} \,dS.

Your answer for A A should be something like:

A = a π + lim ϵ 0 ( b π 2 ϵ 2 ) \displaystyle A=a\pi+\lim_{\epsilon \to 0} (b\pi^{2} \epsilon^{2} )

Submit a + b a+b as your answer.


The answer is 700.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matheus Naves
Apr 30, 2016

Relevant wiki: surface integral

First we need to evaluate the divergent of F ( x , y , z ) F(x,y,z) , making:

F ( x , y , z ) = x y ( 4 x 2 + y 2 ) ( ( 4 x 2 + y 2 ) 2 + z 2 ) 3 x 2 + y 2 y x ( 4 x 2 + y 2 ) ( ( 4 x 2 + y 2 ) 2 + z 2 ) 3 x 2 + y 2 + 7 7 = 0 \nabla \cdot F(x,y,z)=\frac{xy(4-\sqrt{x^{2}+y^{2}})}{\sqrt{((4-\sqrt{x^{2}+y^{2}})^2+z^2)}^{3}\sqrt{x^{2}+y^{2}}} -\frac{yx(4-\sqrt{x^{2}+y^{2}})}{\sqrt{((4-\sqrt{x^{2}+y^{2}})^2+z^2)}^{3}\sqrt{x^{2}+y^{2}}}+7-7 =0

So by Divergence theorem, we have:

R F ( x , y , z ) d x d y d z = S F ( x , y , z ) n S ^ d S S + T 1 F ( x , y , z ) n T 1 ^ d S T 1 + T 2 F ( x , y , z ) n T 2 ^ d S T 2 ( 1 ) \int \int \int_R \nabla \cdot F(x,y,z) \,dx \,dy \,dz=\int \int_S F(x,y,z)\cdot \hat{n_{S}} \,dS_{S}+\int \int_{T_{1}} F(x,y,z)\cdot \hat{n_{T_{1}}} \,dS_{T_{1}}+\int \int_{T_{2}} F(x,y,z)\cdot \hat{n_{T_{2}}} \,dS_{T_{2}} (1)

Where the surface S represent the region of the sphere limited by the plans, T 1 T_{1} represents the intersection of the upper plan ( z = 3 z=3 ) with the sphere and T 2 T_{2} represents the intersection of the lower plan ( z = 4 z=-4 ) with the sphere. But we doesn't can use the divergence theorem in this case because the flux, F ( x , y , z ) F(x,y,z) , don't are limited in the region R. But, for the validity of the equation 1 we can make a improper surface integral around of the non limited region of the flux. So, we need add this for the right side of the equation 1:

lim ϵ 0 T F ( x , y , z ) n i n ^ d S . \lim_{\epsilon \to 0} \int \int_T F(x,y,z)\cdot \hat{n_{in}} \,dS.

Where n i n ^ \hat{n_{in}} is oriented for inside of the torus. And now we can calculate the flux over A, for the region T 1 T_{1} , the n T 1 ^ = ( 0 , 0 , 1 ) \hat{n_{T_{1}}}=(0,0,1) and for the region T 2 T_{2} the n T 2 ^ = ( 0 , 0 , 1 ) \hat{n_{T_{2}}}=(0,0,-1) , so we have:

T 1 F ( x , y , z ) n T 1 ^ d S T 1 + T 2 F ( x , y , z ) n T 2 ^ d S T 2 = T 1 7 ( 3 ) d S + T 2 ( 7 ) ( 4 ) d S \int \int_{T_{1}} F(x,y,z)\cdot \hat{n_{T_{1}}} \,dS_{T_{1}}+\int \int_{T_{2}} F(x,y,z)\cdot \hat{n_{T_{2}}} \,dS_{T_{2}}= \int \int_{T_{1}} -7(3) \,dS + \int \int_{T_{2}} -(-7)(-4) \, dS

= ( 21 ( π ( 5 2 3 2 ) ) + 28 ( π ( 5 2 4 2 ) ) ) = 588 π = -(21(\pi (5^{2}-3^{2}))+28(\pi (5^{2}-4^{2})))=-588\pi

For find the flux of the torus, we need to use his parametric equation:

σ ( u , v ) = ( ( 4 ϵ c o s v ) c o s u , ( 4 ϵ c o s v ) s i n u , ϵ s i n v ) \sigma(u,v)=((4-\epsilon cosv)cosu,(4-\epsilon cosv)sinu,\epsilon sinv)

So, getting the opposite normal vector of this curve we have:

T F ( x , y , z ) n i n ^ = 0 2 π 0 2 π ( ( 4 ϵ c o s v ) 2 s i n u c o s u c o s v ϵ ( ( 4 x 2 + y 2 ) 2 + z 2 ) ) + ( ( 4 ϵ c o s v ) 2 s i n u c o s u c o s v ϵ ( ( 4 x 2 + y 2 ) 2 + z 2 ) \int \int_T F(x,y,z)\cdot \hat{n_{in}} = \int_0^{2 \pi} \int_0^{2 \pi} (\frac{-(4-\epsilon cosv)^{2}sinu cosu cosv \epsilon}{\sqrt{((4-\sqrt{x^{2}+y^{2}})^{2}+z^{2})}}) +(\frac{(4-\epsilon cosv)^{2}sinu cosu cosv \epsilon}{\sqrt{((4-\sqrt{x^{2}+y^{2}})^{2}+z^{2})}} + 7 ( ( 4 ϵ c o s v ) 2 ( s i n u ) 2 c o s v ϵ ) + ( 7 ( 4 ϵ c o s v ) ϵ 2 ( s i n v ) 2 ) d v d u +7((4-\epsilon cosv)^{2}(sinu)^{2} cosv \epsilon)+ (-7(4-\epsilon cosv) \epsilon^{2} (sinv)^{2}) \,dv \,du

= 0 2 π 0 2 π + 7 ( ( 4 ϵ c o s v ) 2 ( s i n u ) 2 c o s v ϵ ) + ( 7 ( 4 ϵ c o s v ) ϵ 2 ( s i n v ) 2 ) d v d u = 112 π 2 ϵ 2 = \int_0^{2 \pi} \int_0^{2 \pi} +7((4-\epsilon cosv)^{2}(sinu)^{2} cosv \epsilon)+(-7(4-\epsilon cosv) \epsilon^{2} (sinv)^{2}) \,dv \,du=-112\pi^{2} \epsilon^{2}

So,

A = 588 π + lim ϵ 0 ( 112 π 2 ϵ 2 ) = 588 π A=588\pi+\lim_{\epsilon \to 0} (112\pi^{2} \epsilon^{2})=588\pi

And,

a + b = 588 + 112 = 700 a+b=588+112=700

OFF: I think that is it. Sounds me cool make de k component of the flux be proportional a z ϵ 2 \frac{z}{ \epsilon^2} , in this way may the flux of the torus be some number different of zero. But, it's hard make the divergent be zero in this case.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...