Surprising Closed Form

Calculus Level 5

0 x e x 10 100 ( e x 5 + 1 ) d x = ? \displaystyle \large \int_{0}^{\infty} \dfrac{xe^{\frac{x}{10}}}{100(e^{\frac{x}{5}}+1)} \, dx = \, ?

Give your answer to 2 decimal places.


The answer is 0.91.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Same solution as @Jack Lam , presented in more detail.

I = 0 x e x 10 100 ( e x 5 + 1 ) d x Let u = e x 10 x = 10 ln u , d x = 10 u d u = 1 10 ln u u 100 ( u 2 + 1 ) 10 u d u = 1 ln u u 2 + 1 d u = G 0.915966 \begin{aligned} I & = \int_0^\infty \frac {xe^\frac x{10}}{100(e^\frac x5 + 1)} dx & \small \color{#3D99F6}{\text{Let }u=e^\frac x{10} \implies x = 10 \ln u, \ dx = \frac {10}u du} \\ & = \int_1^\infty \frac {10 \ln u \cdot u}{100(u^2 + 1)} \cdot \frac {10}u du \\ & = \int_1^\infty \frac {\ln u}{u^2 + 1} du \\ & = \color{#3D99F6}{G} \approx \boxed{0.915966} \end{aligned}

where G \color{#3D99F6}{G} is Catalan's constant .

Tapas Mazumdar
Mar 7, 2017

Let

I = 0 x 100 e x 10 ( e x 5 + 1 ) d x I = \displaystyle \int_0^{\infty} \dfrac{x}{100} \cdot \color{#3D99F6}{\dfrac{e^{\frac{x}{10}}}{\left( e^{\frac x5} +1 \right)}} \, dx

Lets manipulate the part highlighted in blue. Assume that x 10 = t \dfrac{x}{10} = t , so that part becomes

e t e 2 t + 1 = 1 e t + 1 e t = 1 e t + e t = 1 2 2 e t + e t = 1 2 1 cosh ( t ) = 1 2 1 cosh ( x 10 ) \begin{aligned} \dfrac{e^t}{e^{2t}+1} &= \dfrac{1}{e^t + \frac{1}{e^t}} \\ &= \dfrac{1}{e^t + e^{-t}} \\ &= \dfrac 12 \cdot \dfrac{2}{e^t + e^{-t}} \\ &= \dfrac 12 \cdot \dfrac{1}{\cosh(t)} \\ &= \dfrac 12 \cdot \dfrac{1}{\cosh \left( \frac{x}{10} \right)} \end{aligned}

Thus, our integral is

I = 0 x 100 1 2 1 cosh ( x 10 ) d x = 1 10 [ 1 2 0 ( x 10 ) cosh ( x 10 ) d x ] = 1 10 10 G ( ) = G = 0.91 \begin{aligned} I &= \displaystyle \int_0^{\infty} \dfrac{x}{100} \cdot \dfrac 12 \cdot \dfrac{1}{\cosh \left( \frac{x}{10} \right)} \, dx \\ &= \dfrac{1}{10} \left[ \dfrac 12 \displaystyle \int_0^{\infty} \dfrac{\left( \frac{x}{10} \right)}{\cosh \left( \frac{x}{10} \right)} \, dx \right] \\ &= \dfrac{1}{10} \cdot 10G \qquad \color{#D61F06}{(\star)} \\ &= G \\ &= \boxed{0.91} \end{aligned}


One of the many known integral representations of G G ( Catalan's Constant ) include

G = 1 2 0 t cosh t d t G = {\dfrac {1}{2}}\int _{0}^{\infty }{\frac {t}{\cosh t}}\,dt

Jack Lam
Jul 17, 2016

The substitution u = e x 10 u = e^{\frac{x}{10}} or u = e x 10 u = e^{\frac{-x}{10}} transforms it into one of the many integral definitions of Catalan's Constant .

( link try to do this problem please

Sudhamsh Suraj - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...