The equation above holds true for integers and , where is a prime. What is ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I did a long solution, not sure if it's the smartest one. Still:
I = ∫ 0 2 π ln ( 4 9 sin 2 θ + 8 1 cos 2 θ ) d θ
I = ∫ 0 2 π ln ( 4 9 sin 2 θ + 4 9 cos 2 θ + 3 2 cos 2 θ ) d θ
I = ∫ 0 2 π ln ( 4 9 + 3 2 cos 2 θ ) d θ
I = ∫ 0 2 π ln [ ( 4 9 ) ( 1 + 4 9 3 2 cos 2 θ ) ] d θ
I = ∫ 0 2 π ln ( 4 9 ) d θ + ∫ 0 2 π ln ( 1 + 4 9 3 2 cos 2 θ ) d θ
From the Maclaurin Series of ln ( 1 + x ) , ∣ x ∣ ≤ 1 , x = − 1 :
I = 2 π ln ( 7 2 ) + ∫ 0 2 π k = 1 ∑ ∞ k ( − 1 ) k + 1 ( 4 9 3 2 cos 2 θ ) k d θ
I = 2 π ln ( 7 2 ) − ∫ 0 2 π k = 1 ∑ ∞ k ( − 4 9 3 2 cos 2 θ ) k d θ
I = π ln ( 7 ) − k = 1 ∑ ∞ k ( − 4 9 3 2 ) k ∫ 0 2 π cos 2 k θ d θ
I = π ln ( 7 ) − k = 1 ∑ ∞ k ( − 4 9 3 2 ) k ⋅ 2 1 ⋅ B ( 2 1 , k + 2 1 )
Where B ( x , y ) is the Beta Function , which is equal to:
I = π ln ( 7 ) − 2 1 k = 1 ∑ ∞ k ( − 4 9 3 2 ) k ⋅ Γ ( k + 1 ) Γ ( 2 1 ) Γ ( k + 2 1 )
Where Γ ( x ) is the Gamma Function . We have Γ ( k + 1 ) = k ! , Γ ( 2 1 ) = π and Γ ( x + 1 ) = x Γ ( x ) , which leads to the following property of Γ ( k + 2 1 ) :
I = π ln ( 7 ) − 2 1 k = 1 ∑ ∞ k ( − 4 9 3 2 ) k ⋅ k ! π ⋅ 2 k 1 × 3 × 5 × . . . × ( 2 k − 1 ) π
I = π ln ( 7 ) − 2 π k = 1 ∑ ∞ k ( − 4 9 3 2 ) k ⋅ k ! 1 ⋅ 2 k 1 × 3 × 5 × . . . × ( 2 k − 1 ) ⋅ 2 × 4 × 6 × . . . × ( 2 k ) 2 × 4 × 6 × . . . × ( 2 k )
I = π ln ( 7 ) − 2 π k = 1 ∑ ∞ k ( − 4 9 3 2 ) k ⋅ k ! 1 ⋅ 4 k k ! ( 2 k ) !
I = π ln ( 7 ) − 2 π k = 1 ∑ ∞ k ( − 4 9 8 ) k ( k 2 k )
Now recall that:
k = 1 ∑ ∞ ( k 2 k ) x k = 1 − 4 x 1 − 1 , ∣ x ∣ < 4 1
Dividing by x and then Integrating with respect to x from 0 to x on both sides (See NOTE below for further details):
k = 1 ∑ ∞ ( k 2 k ) k x k = 2 [ ln ( 2 ) − ln ( 1 − 4 x + 1 ) ] , ∣ x ∣ < 4 1
So:
I = π ln ( 7 ) − 2 π ⋅ 2 ⋅ [ ln ( 2 ) − ln ( 1 − 4 ( − 4 9 8 ) + 1 ) ]
I = π ln ( 7 ) − π [ ln ( 2 ) − ln ( 7 1 6 ) ]
I = π ln ( 7 ) − π ln ( 2 ) + π ln ( 1 6 ) − π ln ( 7 )
I = π ln ( 8 )
I = 3 π ln ( 2 )
So:
a = 3 , b = 2 , a + b = 5
NOTE: The integration steps (for ∣ x ∣ < 4 1 ):
From Maclaurin Series :
( 1 − 4 x ) − 2 1 = 0 ! 1 ( 1 − 4 x ) − 2 1 ∣ x = 0 + 1 ! 1 ( − 2 1 ⋅ − 4 ) ( 1 − 4 x ) − 2 3 ∣ x = 0 ⋅ x + 2 ! 1 ( − 2 1 ⋅ − 2 3 ⋅ ( − 4 ) 2 ) ( 1 − 4 x ) − 2 5 ∣ x = 0 ⋅ x 2 + . . .
( 1 − 4 x ) − 2 1 = k = 0 ∑ ∞ 2 k ⋅ k ! 4 k 1 × 3 × 5 . . . × ( 2 k − 1 ) ⋅ x k
( 1 − 4 x ) − 2 1 = k = 0 ∑ ∞ k ! 2 k 1 × 3 × 5 . . . × ( 2 k − 1 ) ⋅ 2 × 4 × 6 × . . . × 2 k 2 × 4 × 6 × . . . × 2 k ⋅ x k
( 1 − 4 x ) − 2 1 = k = 0 ∑ ∞ k ! 2 k 2 k k ! ( 2 k ) ! x k
( 1 − 4 x ) − 2 1 = k = 0 ∑ ∞ k ! k ! ( 2 k ) ! x k
( 1 − 4 x ) − 2 1 = k = 0 ∑ ∞ ( k 2 k ) x k
( 1 − 4 x ) − 2 1 − 1 = k = 1 ∑ ∞ ( k 2 k ) x k
Now dividing by x on both sides:
k = 1 ∑ ∞ ( k 2 k ) x k − 1 = x 1 − 4 x 1 − x 1
Integrating on both sides:
∫ k = 1 ∑ ∞ ( k 2 k ) x k − 1 = ∫ x 1 − 4 x 1 d x − ∫ x 1 d x
On the first integral, make u = 1 − 4 x , then x = 4 1 − u and d x = − 4 d u . ( C i is an arbitrary constant:)
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ∫ ( 1 − u ) u 1 d u − ln ( x ) + C 2
Now make t = u , u = t 2 and u d u = 2 d t :
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ( ∫ 1 − t 2 2 d t + ln ( x ) ) + C 2
Expanding in partial fractions:
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − [ ∫ ( 1 + t 1 + 1 − t 1 ) d t + ln ( x ) ] + C 2
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − [ ln ( 1 + t ) − ln ( 1 − t ) + ln ( x ) ] + C 2
Since t = u = 1 − 4 x :
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ln ( 1 − 1 − 4 x x ( 1 + 1 − 4 x ) ) + C 2
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ln ( ( 1 − 1 − 4 x ) ( 1 + 1 − 4 x ) x ( 1 + 1 − 4 x ) ( 1 + 1 − 4 x ) ) + C 2
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ln ⎝ ⎜ ⎛ 4 x x ( 1 + 1 − 4 x ) 2 ⎠ ⎟ ⎞ + C 2
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ln ⎝ ⎜ ⎛ 4 ( 1 + 1 − 4 x ) 2 ⎠ ⎟ ⎞ + C 2
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − ln ( ( 1 + 1 − 4 x ) 2 ) + ln ( 4 ) + C 2
k = 1 ∑ ∞ ( k 2 k ) k x k + C 1 = − 2 ln ( 1 + 1 − 4 x ) + C 3
Making the limits of integration from 0 to x :
k = 1 ∑ ∞ ( k 2 k ) k x k = 2 [ ln ( 2 ) − ln ( 1 + 1 − 4 x ) ]