Surprisingly concise answer

Calculus Level 5

0 π / 2 ln ( 49 sin 2 θ + 81 cos 2 θ ) d θ = a π ln ( b ) \int_{0}^{\pi/2}\ln \big( 49\sin^2\theta+81\cos^2\theta\big) d\theta=a\pi\ln(b)

The equation above holds true for integers a a and b b , where b b is a prime. What is a + b a+b ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Apr 13, 2020

I did a long solution, not sure if it's the smartest one. Still:

I = 0 π 2 ln ( 49 sin 2 θ + 81 cos 2 θ ) d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \ln(49 \sin^2 \theta + 81 \cos^2 \theta) d \theta

I = 0 π 2 ln ( 49 sin 2 θ + 49 cos 2 θ + 32 cos 2 θ ) d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \ln(49 \sin^2 \theta + 49 \cos^2 \theta + 32 \cos^2 \theta) d \theta

I = 0 π 2 ln ( 49 + 32 cos 2 θ ) d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \ln(49 + 32 \cos^2 \theta) d \theta

I = 0 π 2 ln [ ( 49 ) ( 1 + 32 49 cos 2 θ ) ] d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \ln \left [ (49) \left (1 + \frac{32}{49} \cos^2 \theta \right ) \right ] d \theta

I = 0 π 2 ln ( 49 ) d θ + 0 π 2 ln ( 1 + 32 49 cos 2 θ ) d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \ln (49) d\theta + \int_0^{\frac{\pi}{2}} \ln \left (1 + \frac{32}{49} \cos^2 \theta \right ) d \theta

From the Maclaurin Series of ln ( 1 + x ) , x 1 , x 1 \ln(1+x), |x| \leq 1, x \neq -1 :

I = π 2 ln ( 7 2 ) + 0 π 2 k = 1 ( 1 ) k + 1 ( 32 cos 2 θ 49 ) k k d θ \large \displaystyle I = \frac{\pi}{2} \ln(7^2) + \int_0^{\frac{\pi}{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k+1} \left( \frac{32 \cos^2 \theta}{49} \right )^k }{k} d \theta

I = π 2 ln ( 7 2 ) 0 π 2 k = 1 ( 32 cos 2 θ 49 ) k k d θ \large \displaystyle I = \frac{\pi}{2} \ln(7^2) - \int_0^{\frac{\pi}{2}} \sum_{k=1}^{\infty} \frac{ \left( - \frac{32 \cos^2 \theta}{49} \right )^k }{k} d \theta

I = π ln ( 7 ) k = 1 ( 32 49 ) k k 0 π 2 cos 2 k θ d θ \large \displaystyle I = \pi \ln(7) - \sum_{k=1}^{\infty} \frac{ \left(- \frac{32}{49} \right )^k }{k} \int_0^{\frac{\pi}{2}} \cos^{2k} \theta d\theta

I = π ln ( 7 ) k = 1 ( 32 49 ) k k 1 2 B ( 1 2 , k + 1 2 ) \large \displaystyle I = \pi \ln(7) - \sum_{k=1}^{\infty} \frac{ \left(- \frac{32}{49} \right )^k }{k} \cdot \frac12 \cdot B \left ( \frac12, k+\frac12 \right )

Where B ( x , y ) B(x,y) is the Beta Function , which is equal to:

I = π ln ( 7 ) 1 2 k = 1 ( 32 49 ) k k Γ ( 1 2 ) Γ ( k + 1 2 ) Γ ( k + 1 ) \large \displaystyle I = \pi \ln(7) - \frac12 \sum_{k=1}^{\infty} \frac{ \left(- \frac{32}{49} \right )^k }{k} \cdot \frac{ \Gamma \left( \frac12 \right ) \Gamma \left( k + \frac12 \right ) }{\Gamma (k+1) }

Where Γ ( x ) \Gamma(x) is the Gamma Function . We have Γ ( k + 1 ) = k ! \Gamma(k+1) = k! , Γ ( 1 2 ) = π \Gamma(\frac12) = \sqrt{\pi} and Γ ( x + 1 ) = x Γ ( x ) \Gamma(x+1) = x\Gamma(x) , which leads to the following property of Γ ( k + 1 2 ) \Gamma(k+\frac12) :

I = π ln ( 7 ) 1 2 k = 1 ( 32 49 ) k k π k ! 1 × 3 × 5 × . . . × ( 2 k 1 ) 2 k π \large \displaystyle I = \pi \ln(7) - \frac12 \sum_{k=1}^{\infty} \frac{ \left( - \frac{32}{49} \right )^k }{k} \cdot \frac{\sqrt{\pi}}{k!} \cdot \frac{1 \times 3 \times 5 \times ... \times (2k-1)}{2^k} \sqrt{\pi}

I = π ln ( 7 ) π 2 k = 1 ( 32 49 ) k k 1 k ! 1 × 3 × 5 × . . . × ( 2 k 1 ) 2 k 2 × 4 × 6 × . . . × ( 2 k ) 2 × 4 × 6 × . . . × ( 2 k ) \large \displaystyle I = \pi \ln(7) - \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{ \left( - \frac{32}{49} \right )^k }{k} \cdot \frac{1}{k!} \cdot \frac{1 \times 3 \times 5 \times ... \times (2k-1)}{2^k} \cdot \frac{2 \times 4 \times 6 \times ... \times (2k)}{2 \times 4 \times 6 \times ... \times (2k)}

I = π ln ( 7 ) π 2 k = 1 ( 32 49 ) k k 1 k ! ( 2 k ) ! 4 k k ! \large \displaystyle I = \pi \ln(7) - \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{ \left( - \frac{32}{49} \right )^k }{k} \cdot \frac{1}{k!} \cdot \frac{(2k)!}{4^k k!}

I = π ln ( 7 ) π 2 k = 1 ( 8 49 ) k k ( 2 k k ) \large \displaystyle I = \pi \ln(7) - \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{ \left( - \frac{8}{49} \right )^k }{k} {2k \choose k}

Now recall that:

k = 1 ( 2 k k ) x k = 1 1 4 x 1 , x < 1 4 \large \displaystyle \sum_{k=1}^{\infty} {2k \choose k} x^k = \frac{1}{\sqrt{1-4x}} -1, |x| < \frac14

Dividing by x x and then Integrating with respect to x x from 0 0 to x x on both sides (See NOTE below for further details):

k = 1 ( 2 k k ) x k k = 2 [ ln ( 2 ) ln ( 1 4 x + 1 ) ] , x < 1 4 \large \displaystyle \sum_{k=1}^{\infty} {2k \choose k} \frac{x^k}{k} = 2 \left [ \ln(2) - \ln \left( \sqrt{1-4x} + 1 \right ) \right ], |x| < \frac14

So:

I = π ln ( 7 ) π 2 2 [ ln ( 2 ) ln ( 1 4 ( 8 49 ) + 1 ) ] \large \displaystyle I = \pi \ln(7) - \frac{\pi}{2} \cdot 2 \cdot \left [ \ln(2) - \ln \left( \sqrt{1-4 \left ( -\frac{8}{49} \right ) } + 1 \right ) \right ]

I = π ln ( 7 ) π [ ln ( 2 ) ln ( 16 7 ) ] \large \displaystyle I = \pi \ln(7) - \pi \left [ \ln(2) - \ln \left( \frac{16}{7} \right ) \right ]

I = π ln ( 7 ) π ln ( 2 ) + π ln ( 16 ) π ln ( 7 ) \large \displaystyle I = \pi \ln(7) - \pi\ln(2) + \pi \ln(16) - \pi \ln(7)

I = π ln ( 8 ) \large \displaystyle I = \pi \ln(8)

I = 3 π ln ( 2 ) \color{#20A900} \boxed{\large \displaystyle I = 3 \pi \ln(2)}

So:

a = 3 , b = 2 , a + b = 5 \color{#3D99F6} \large \displaystyle a = 3, b = 2, \boxed{\large \displaystyle a+b=5}


NOTE: The integration steps (for x < 1 4 |x| < \frac14 ):

From Maclaurin Series :

( 1 4 x ) 1 2 = 1 0 ! ( 1 4 x ) 1 2 x = 0 + 1 1 ! ( 1 2 4 ) ( 1 4 x ) 3 2 x = 0 x + 1 2 ! ( 1 2 3 2 ( 4 ) 2 ) ( 1 4 x ) 5 2 x = 0 x 2 + . . . \large \displaystyle (1-4x)^{-\frac12} = \frac{1}{0!}(1-4x)^{-\frac12} |_{x=0} +\frac{1}{1!} \left ( -\frac12 \cdot -4 \right ) (1-4x) ^{-\frac32} |_{x=0} \cdot x + \frac{1}{2!}\left ( -\frac12 \cdot - \frac32 \cdot (-4)^2 \right ) (1-4x) ^{-\frac52} |_{x=0} \cdot x^2 + ...

( 1 4 x ) 1 2 = k = 0 4 k 2 k k ! 1 × 3 × 5... × ( 2 k 1 ) x k \large \displaystyle (1-4x)^{-\frac12} = \sum_{k=0}^{\infty} \frac{4^k}{2^k \cdot k!} 1 \times 3 \times 5... \times (2k-1) \cdot x^k

( 1 4 x ) 1 2 = k = 0 2 k k ! 1 × 3 × 5... × ( 2 k 1 ) 2 × 4 × 6 × . . . × 2 k 2 × 4 × 6 × . . . × 2 k x k \large \displaystyle (1-4x)^{-\frac12} = \sum_{k=0}^{\infty} \frac{2^k}{k!} 1 \times 3 \times 5... \times (2k-1) \cdot \frac{ 2 \times 4 \times 6 \times ... \times 2k}{ 2 \times 4 \times 6 \times ... \times 2k} \cdot x^k

( 1 4 x ) 1 2 = k = 0 2 k k ! ( 2 k ) ! 2 k k ! x k \large \displaystyle (1-4x)^{-\frac12} = \sum_{k=0}^{\infty} \frac{2^k}{k!} \frac{(2k)!}{2^k k!} x^k

( 1 4 x ) 1 2 = k = 0 ( 2 k ) ! k ! k ! x k \large \displaystyle (1-4x)^{-\frac12} = \sum_{k=0}^{\infty} \frac{(2k)!}{k! k!} x^k

( 1 4 x ) 1 2 = k = 0 ( 2 k k ) x k \large \displaystyle (1-4x)^{-\frac12} = \sum_{k=0}^{\infty}{ 2k \choose k} x^k

( 1 4 x ) 1 2 1 = k = 1 ( 2 k k ) x k \large \displaystyle (1-4x)^{-\frac12} - 1 = \sum_{k=1}^{\infty}{ 2k \choose k} x^k

Now dividing by x x on both sides:

k = 1 ( 2 k k ) x k 1 = 1 x 1 4 x 1 x \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} x^{k-1} = \frac{1}{x \sqrt{1-4x}} - \frac{1}{x}

Integrating on both sides:

k = 1 ( 2 k k ) x k 1 = 1 x 1 4 x d x 1 x d x \large \displaystyle \int \sum_{k=1}^{\infty}{ 2k \choose k} x^{k-1} = \int \frac{1}{x \sqrt{1-4x}} dx - \int \frac{1}{x} dx

On the first integral, make u = 1 4 x u = 1-4x , then x = 1 u 4 x = \frac{1-u}{4} and d x = d u 4 dx = - \frac{du}{4} . ( C i C_i is an arbitrary constant:)

k = 1 ( 2 k k ) x k k + C 1 = 1 ( 1 u ) u d u ln ( x ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = -\int \frac{1}{(1-u) \sqrt{u}} du - \ln(x) + C_2

Now make t = u t = \sqrt{u} , u = t 2 u = t^2 and d u u = 2 d t \frac{du}{\sqrt{u}} = 2dt :

k = 1 ( 2 k k ) x k k + C 1 = ( 2 1 t 2 d t + ln ( x ) ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = -\left ( \int \frac{2}{1-t^2} dt + \ln(x) \right ) + C_2

Expanding in partial fractions:

k = 1 ( 2 k k ) x k k + C 1 = [ ( 1 1 + t + 1 1 t ) d t + ln ( x ) ] + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = -\left [ \int \left ( \frac{1}{1+t} + \frac{1}{1-t} \right ) dt + \ln(x) \right ] + C_2

k = 1 ( 2 k k ) x k k + C 1 = [ ln ( 1 + t ) ln ( 1 t ) + ln ( x ) ] + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = -\left [ \ln(1+t) -\ln(1-t) + \ln(x) \right ] + C_2

Since t = u = 1 4 x t = \sqrt{u} = \sqrt{1-4x} :

k = 1 ( 2 k k ) x k k + C 1 = ln ( x ( 1 + 1 4 x ) 1 1 4 x ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = - \ln \left ( \frac{x(1 + \sqrt{1-4x})}{1 - \sqrt{1-4x}} \right ) + C_2

k = 1 ( 2 k k ) x k k + C 1 = ln ( x ( 1 + 1 4 x ) ( 1 + 1 4 x ) ( 1 1 4 x ) ( 1 + 1 4 x ) ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = - \ln \left ( \frac{x(1 + \sqrt{1-4x})(1 + \sqrt{1-4x})}{(1 - \sqrt{1-4x})(1 + \sqrt{1-4x})} \right ) + C_2

k = 1 ( 2 k k ) x k k + C 1 = ln ( x ( 1 + 1 4 x ) 2 4 x ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = - \ln \left ( \frac{x \left (1 + \sqrt{1-4x} \right )^2}{4x} \right ) + C_2

k = 1 ( 2 k k ) x k k + C 1 = ln ( ( 1 + 1 4 x ) 2 4 ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = - \ln \left ( \frac{ \left (1 + \sqrt{1-4x} \right )^2}{4} \right ) + C_2

k = 1 ( 2 k k ) x k k + C 1 = ln ( ( 1 + 1 4 x ) 2 ) + ln ( 4 ) + C 2 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = - \ln \left ( \left (1 + \sqrt{1-4x} \right )^2\right ) + \ln(4) + C_2

k = 1 ( 2 k k ) x k k + C 1 = 2 ln ( 1 + 1 4 x ) + C 3 \large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} + C_1 = -2 \ln \left (1 + \sqrt{1-4x}\right ) + C_3

Making the limits of integration from 0 0 to x x :

k = 1 ( 2 k k ) x k k = 2 [ ln ( 2 ) ln ( 1 + 1 4 x ) ] \color{#20A900} \boxed{\large \displaystyle \sum_{k=1}^{\infty}{ 2k \choose k} \frac{x^k}{k} = 2 \left [ \ln(2) - \ln \left (1 + \sqrt{1-4x}\right ) \right ] }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...