Swimming and Running

Calculus Level pending

f ( x ) = ( 3 sin ( 2 π x ) ) sin ( π x π 4 ) sin ( 3 π x + π 4 ) f(x) = (3-\sin(2\pi x))\sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x +\frac{\pi}{4}\right) I = { 0 x 100 : 0 f ( x ) 2 2 } I = \{ 0\leq x \leq 100: 0\leq f(x) \leq 2\sqrt2 \} Consider a racing track ( y = 0 ) (y=0) in which there is land when x I x \in I and water when x I x \notin I . Participants in a race start from the point x = 0 x =0 and end at the point x = 100 x=100 on this track. Distance swam Distance ran \dfrac{\text{Distance swam}}{\text{Distance ran}} in this race is:

4 4.04 3.04 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sid Patak
Feb 8, 2021

f ( x ) = ( 3 sin ( 2 π x ) ) sin ( π x π 4 ) sin ( 3 π x + π 4 ) f(x) = (3-\sin(2\pi x))\sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x +\frac{\pi}{4}\right) \\ I = { 0 x 100 : 0 f ( x ) 2 2 } I = \{ 0\leq x \leq 100: 0\leq f(x) \leq 2\sqrt2 \}

Let π x = θ \pi x = \theta\\ f ( θ ) = ( 3 sin ( 2 θ ) ) sin ( θ π 4 ) sin ( 3 θ + π 4 ) f(\theta) = (3-\sin(2 \theta))\sin\left( \theta - \frac{\pi}{4}\right) - \sin\left(3 \theta +\frac{\pi}{4}\right) \\ f ( θ ) = ( 3 sin ( 2 θ ) ) ( sin ( θ ) cos ( θ ) 2 ) ( sin ( 3 θ ) + cos ( 3 θ ) 2 ) f(\theta) = (3-\sin(2 \theta)) \left(\dfrac{\sin(\theta)-\cos(\theta)}{\sqrt{2}}\right) - \left(\dfrac{\sin(3 \theta)+\cos(3 \theta)}{\sqrt{2}}\right) \\ 2 f ( θ ) = 3 sin ( θ ) 3 cos ( θ ) sin ( θ ) sin ( 2 θ ) + sin ( 2 θ ) cos ( θ ) sin ( 3 θ ) cos ( 3 θ ) \sqrt{2}f(\theta) = 3\sin(\theta) - 3\cos(\theta) -\sin(\theta)\sin(2 \theta) + \sin(2 \theta)\cos(\theta) - \sin(3 \theta) - \cos(3 \theta) \\ 2 f ( θ ) = 3 ( sin ( θ ) cos ( θ ) ) 1 2 ( cos ( θ ) cos ( 3 θ ) ) + 1 2 ( sin ( 3 θ ) + sin ( θ ) ) sin ( 3 θ ) cos ( 3 θ ) \sqrt{2}f(\theta) = 3(\sin(\theta) - \cos(\theta)) -\dfrac{1}{2}(\cos(\theta)-\cos(3 \theta)) +\dfrac{1}{2}(\sin(3 \theta)+\sin(\theta)) - \sin(3 \theta) - \cos(3 \theta) \\ 2 f ( θ ) = 7 2 sin ( θ ) 7 2 cos ( θ ) 1 2 sin ( 3 θ ) 1 2 cos ( 3 θ ) \sqrt{2}f(\theta) = \dfrac{7}{2}\sin(\theta) - \dfrac{7}{2}\cos(\theta)-\dfrac{1}{2}\sin(3\theta) -\dfrac{1}{2}\cos(3\theta) \\ 2 2 f ( θ ) = 7 ( sin ( θ ) cos ( θ ) ) ( 4 cos 3 ( θ ) 3 cos ( θ ) ) ( 3 sin ( θ ) 4 sin 3 ( θ ) ) 2 \sqrt{2}f(\theta) = 7(\sin(\theta) - \cos(\theta))- (4\cos^3(\theta) - 3\cos(\theta)) - (3\sin(\theta)- 4\sin^3(\theta)) \\ 2 2 f ( θ ) = 4 sin ( θ ) 4 cos ( θ ) + 4 sin 3 ( θ ) 4 cos 3 ( θ ) -A 2 \sqrt{2}f(\theta) = 4\sin(\theta) - 4\cos(\theta) + 4\sin^3(\theta)- 4\cos^3(\theta) \qquad \color{#3D99F6}\text{ -A}\\ f ( θ ) 2 = sin ( θ ) cos ( θ ) ( sin ( θ ) cos ( θ ) ) ( 1 + sin ( θ ) cos ( θ ) ) \dfrac{f(\theta)}{\sqrt{2}} = \sin(\theta)-\cos(\theta) - (\sin(\theta)-\cos(\theta))(1+\sin(\theta)\cos(\theta)) \\ f ( θ ) = 2 ( sin ( θ ) cos ( θ ) ) ( 2 + sin ( θ ) cos ( θ ) ) f(\theta) = \sqrt{2}(\sin(\theta)-\cos(\theta))(2+\sin(\theta)\cos(\theta)) \\

f ( θ ) 0 ( sin ( θ ) cos ( θ ) ) 0 because ( 2 + sin ( 2 θ ) 2 ) is always positive. \color{#D61F06} f(\theta) \geq 0 \implies (\sin(\theta)-\cos(\theta)) \geq0 \text{ because } (2+\frac{\sin(2\theta)}{2}) \text{ is always positive.} \\

f ( θ ) 2 2 2 2 f ( θ ) 8 4 sin ( θ ) 4 cos ( θ ) + 4 sin 3 ( θ ) 4 cos 3 ( θ ) 8 -from A f(\theta) \leq 2\sqrt2 \implies 2 \sqrt{2}f(\theta) \leq 8 \implies 4\sin(\theta) - 4\cos(\theta) + 4\sin^3(\theta)- 4\cos^3(\theta) \leq 8 \qquad \color{#3D99F6}\text{ -from A}\\

4 sin ( θ ) 4 cos ( θ ) + 2 sin 2 ( θ ) cos ( θ ) 2 sin ( θ ) cos 2 ( θ ) 4 0 LHS \implies 4\sin(\theta) - 4\cos(\theta) + 2\sin^2(\theta)\cos(\theta)- 2\sin(\theta)\cos^2(\theta) - 4 \leq 0 \qquad \color{#3D99F6}\text{ LHS}\\

( cos ( θ ) sin ( θ ) + 2 sin ( θ ) cos ( θ ) + 3 ) ( sin ( θ ) cos ( θ ) 1 ) 0 RHS \implies (\cos(\theta)-\sin(\theta)+2\sin(\theta)\cos(\theta)+3)(\sin(\theta)-\cos(\theta)-1) \leq 0 \qquad \color{#3D99F6}\text{ RHS}\\

One can verify LHS = RHS. If anybody has a more intuitive solution, please provide it. \color{#D61F06} \text{One can verify LHS = RHS. If anybody has a more intuitive solution, please provide it.}

( 2 sin ( π 4 θ ) + sin ( 2 θ ) + 3 ) ( sin ( θ ) cos ( θ ) 1 ) 0 \implies (\sqrt{2}\sin\left(\frac{\pi}{4} - \theta\right)+\sin(2 \theta)+3)(\sin(\theta)-\cos(\theta)-1) \leq 0\\

f ( θ ) 2 2 ( sin ( θ ) cos ( θ ) 1 ) 0 because ( 3 + 2 sin ( π 4 θ ) + sin ( 2 θ ) ) is always positive. \color{#D61F06} f(\theta) \leq 2\sqrt2 \implies (\sin(\theta)-\cos(\theta)-1) \leq0 \text{ because } (3 + \sqrt{2}\sin\left(\frac{\pi}{4} - \theta\right)+\sin(2 \theta)) \text{ is always positive.} \\

Hence, 0 f ( θ ) 2 2 ( sin ( θ ) cos ( θ ) 0 ) and ( sin ( θ ) cos ( θ ) 1 0 ) \text{Hence, } 0\leq f(\theta) \leq 2\sqrt2 \implies (\sin(\theta) - \cos(\theta) \geq 0) \text{ and } (\sin(\theta) - \cos(\theta) -1 \leq 0) \\ 0 sin ( θ ) cos ( θ ) 1 0 2 sin ( θ π 4 ) 1 0 sin ( θ π 4 ) 1 2 \implies 0 \leq \sin(\theta) - \cos(\theta) \leq 1 \implies 0 \leq \sqrt{2}\sin(\theta - \frac{\pi}{4}) \leq 1 \implies 0 \leq \sin(\theta - \frac{\pi}{4}) \leq \frac{1}{\sqrt{2}} \\

θ [ π 4 + 2 π n , π 2 + 2 π n ] [ π + 2 π n , 5 π 4 + 2 π n ] \color{#D61F06} \implies \theta \in [\frac{\pi}{4} + 2\pi n, \frac{\pi}{2} + 2\pi n] \cup [\pi + 2\pi n, \frac{5 \pi}{4} + 2\pi n] \\

x [ 1 4 + 2 n , 1 2 + 2 n ] [ 1 + 2 n , 5 4 + 2 n ] , n Z + \color{#D61F06} \implies x \in [\frac{1}{4} + 2 n, \frac{1}{2} + 2n] \cup [1 + 2n, \frac{5}{4} + 2n], n \in \mathbb{Z^+} \\ when n = 50, it breaches the finish line. Hence n = 0, 1,2 ... 49. Distance ran = 50 (1/4) + 50 (1/4) = 25. Distance swam= 100-25 = 75.

Distance swam Distance ran \dfrac{\text{Distance swam}}{\text{Distance ran}} = 75 25 = 3 \dfrac{75}{25} = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...