Consider a racing track in which there is land when and water when . Participants in a race start from the point and end at the point on this track. in this race is:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( x ) = ( 3 − sin ( 2 π x ) ) sin ( π x − 4 π ) − sin ( 3 π x + 4 π ) I = { 0 ≤ x ≤ 1 0 0 : 0 ≤ f ( x ) ≤ 2 2 }
Let π x = θ f ( θ ) = ( 3 − sin ( 2 θ ) ) sin ( θ − 4 π ) − sin ( 3 θ + 4 π ) f ( θ ) = ( 3 − sin ( 2 θ ) ) ( 2 sin ( θ ) − cos ( θ ) ) − ( 2 sin ( 3 θ ) + cos ( 3 θ ) ) 2 f ( θ ) = 3 sin ( θ ) − 3 cos ( θ ) − sin ( θ ) sin ( 2 θ ) + sin ( 2 θ ) cos ( θ ) − sin ( 3 θ ) − cos ( 3 θ ) 2 f ( θ ) = 3 ( sin ( θ ) − cos ( θ ) ) − 2 1 ( cos ( θ ) − cos ( 3 θ ) ) + 2 1 ( sin ( 3 θ ) + sin ( θ ) ) − sin ( 3 θ ) − cos ( 3 θ ) 2 f ( θ ) = 2 7 sin ( θ ) − 2 7 cos ( θ ) − 2 1 sin ( 3 θ ) − 2 1 cos ( 3 θ ) 2 2 f ( θ ) = 7 ( sin ( θ ) − cos ( θ ) ) − ( 4 cos 3 ( θ ) − 3 cos ( θ ) ) − ( 3 sin ( θ ) − 4 sin 3 ( θ ) ) 2 2 f ( θ ) = 4 sin ( θ ) − 4 cos ( θ ) + 4 sin 3 ( θ ) − 4 cos 3 ( θ ) -A 2 f ( θ ) = sin ( θ ) − cos ( θ ) − ( sin ( θ ) − cos ( θ ) ) ( 1 + sin ( θ ) cos ( θ ) ) f ( θ ) = 2 ( sin ( θ ) − cos ( θ ) ) ( 2 + sin ( θ ) cos ( θ ) )
f ( θ ) ≥ 0 ⟹ ( sin ( θ ) − cos ( θ ) ) ≥ 0 because ( 2 + 2 sin ( 2 θ ) ) is always positive.
f ( θ ) ≤ 2 2 ⟹ 2 2 f ( θ ) ≤ 8 ⟹ 4 sin ( θ ) − 4 cos ( θ ) + 4 sin 3 ( θ ) − 4 cos 3 ( θ ) ≤ 8 -from A
⟹ 4 sin ( θ ) − 4 cos ( θ ) + 2 sin 2 ( θ ) cos ( θ ) − 2 sin ( θ ) cos 2 ( θ ) − 4 ≤ 0 LHS
⟹ ( cos ( θ ) − sin ( θ ) + 2 sin ( θ ) cos ( θ ) + 3 ) ( sin ( θ ) − cos ( θ ) − 1 ) ≤ 0 RHS
One can verify LHS = RHS. If anybody has a more intuitive solution, please provide it.
⟹ ( 2 sin ( 4 π − θ ) + sin ( 2 θ ) + 3 ) ( sin ( θ ) − cos ( θ ) − 1 ) ≤ 0
f ( θ ) ≤ 2 2 ⟹ ( sin ( θ ) − cos ( θ ) − 1 ) ≤ 0 because ( 3 + 2 sin ( 4 π − θ ) + sin ( 2 θ ) ) is always positive.
Hence, 0 ≤ f ( θ ) ≤ 2 2 ⟹ ( sin ( θ ) − cos ( θ ) ≥ 0 ) and ( sin ( θ ) − cos ( θ ) − 1 ≤ 0 ) ⟹ 0 ≤ sin ( θ ) − cos ( θ ) ≤ 1 ⟹ 0 ≤ 2 sin ( θ − 4 π ) ≤ 1 ⟹ 0 ≤ sin ( θ − 4 π ) ≤ 2 1
⟹ θ ∈ [ 4 π + 2 π n , 2 π + 2 π n ] ∪ [ π + 2 π n , 4 5 π + 2 π n ]
⟹ x ∈ [ 4 1 + 2 n , 2 1 + 2 n ] ∪ [ 1 + 2 n , 4 5 + 2 n ] , n ∈ Z + when n = 50, it breaches the finish line. Hence n = 0, 1,2 ... 49. Distance ran = 50 (1/4) + 50 (1/4) = 25. Distance swam= 100-25 = 75.
Distance ran Distance swam = 2 5 7 5 = 3